Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre-Edouard Sottas is active.

Publication


Featured researches published by Pierre-Edouard Sottas.


Clinical Chemistry | 2011

The Athlete Biological Passport

Pierre-Edouard Sottas; Neil Robinson; Olivier Rabin; Martial Saugy

BACKGROUND In elite sports, the growing availability of doping substances identical to those naturally produced by the human body seriously limits the ability of drug-testing regimes to ensure fairness and protection of health. CONTENT The Athlete Biological Passport (ABP), the new paradigm in testing based on the personalized monitoring of biomarkers of doping, offers the enormous advantage of being independent of this endless pharmaceutical race. Doping triggers physiological changes that provide physiological enhancements. In the same way that disease-related biomarkers are invaluable tools that assist physicians in the diagnosis of pathology, specifically selected biomarkers can be used to detect doping. SUMMARY The ABP is a new testing paradigm with immense potential value in the current climate of rapid advancement in biomarker discovery. In addition to its original aim of providing proof of a doping offense, the ABP can also serve as a platform for a Rule of Sport, with the presentation before competition of the ABP to objectively demonstrate that the athlete will participate in a healthy physiological condition that is unaltered by performance-enhancing drugs. Finally, the decision-support system used today for the biological monitoring of world top-level athletes can also be advantageously transferred to other areas of clinical practice to reach the goal of personalized medicine.


Handbook of experimental pharmacology | 2010

The Athlete’s Biological Passport and Indirect Markers of Blood Doping

Pierre-Edouard Sottas; Neil Robinson; Martial Saugy

In the fight against doping, disciplinary sanctions have up to now been primarily based on the discovery of an exogenous substance in a biological fluid of the athlete. However, indirect markers of altered erythropoiesis can provide enough evidence to differentiate between natural variations and blood doping. Forensic techniques for the evaluation of the evidence, and more particularly Bayesian networks, allow antidoping authorities to take into account firstly the natural variations of indirect markers - through a mathematical formalism based on probabilities - and secondly the complexity due to the multiplicity of causes and confounding effects - through a distributed and flexible graphical representation. The information stored in an athletes biological passport may be then sufficient to launch a disciplinary procedure against the athlete. The strength of the passport is that it relies on a statistical approach based on sound empirical testing on large populations and justifiable protocols. Interestingly, its introduction coincides with the paradigm shift that is materializing today in forensic identification science, from archaic assumptions of absolute certainty and perfection to a more defensible empirical and probabilistic foundation.


Endocrinology and Metabolism Clinics of North America | 2010

Endogenous Steroid Profiling in the Athlete Biological Passport

Pierre-Edouard Sottas; Martial Saugy; Christophe Saudan

The Athlete Biological Passport (ABP) is an individual electronic document that collects data regarding a specific athlete that is useful in differentiating between natural physiologic variations of selected biomarkers and deviations caused by artificial manipulations. A subsidiary of the endocrine module of the ABP, that which here is called Athlete Steroidal Passport (ASP), collects data on markers of an altered metabolism of endogenous steroidal hormones measured in urine samples. The ASP aims to identify not only doping with anabolic-androgenic steroids, but also most indirect steroid doping strategies such as doping with estrogen receptor antagonists and aromatase inhibitors. Development of specific markers of steroid doping, use of the athletes previous measurements to define individual limits, with the athlete becoming his or her own reference, the inclusion of heterogeneous factors such as the UDPglucuronosyltransferase B17 genotype of the athlete, the knowledge of potentially confounding effects such as heavy alcohol consumption, the development of an external quality control system to control analytical uncertainty, and finally the use of Bayesian inferential methods to evaluate the value of indirect evidence have made the ASP a valuable alternative to deter steroid doping in elite sports. The ASP can be used to target athletes for gas chromatography/combustion/ isotope ratio mass spectrometry (GC/C/IRMS) testing, to withdraw temporarily the athlete from competing when an abnormality has been detected, and ultimately to lead to an antidoping infraction if that abnormality cannot be explained by a medical condition. Although the ASP has been developed primarily to ensure fairness in elite sports, its application in endocrinology for clinical purposes is straightforward in an evidence-based medicine paradigm.


Medicine and Science in Sports and Exercise | 2008

Total hemoglobin mass--a new parameter to detect blood doping?

Nnicole Prommer; Pierre-Edouard Sottas; Christian Schoch; Yorck Olaf Schumacher; Walter Schmidt

PURPOSE All kinds of blood manipulations aim to increase the total hemoglobin mass (tHb-mass). To establish tHb-mass as an effective screening parameter for detecting blood doping, the knowledge of its normal variation over time is necessary. The aim of the present study, therefore, was to determine the intraindividual variance of tHb-mass in elite athletes during a training year emphasizing off, training, and race seasons at sea level. METHODS tHb-mass and hemoglobin concentration ([Hb]) were determined in 24 endurance athletes five times during a year and were compared with a control group (n = 6). An analysis of covariance was used to test the effects of training phases, age, gender, competition level, body mass, and training volume. Three error models, based on 1) a total percentage error of measurement, 2) the combination of a typical percentage error (TE) of analytical origin with an absolute SD of biological origin, and 3) between-subject and within-subject variance components as obtained by an analysis of variance, were tested. RESULTS In addition to the expected influence of performance status, the main results were that the effects of training volume (P = 0.20) and training phases (P = 0.81) on tHb-mass were not significant. We found that within-subject variations mainly have an analytical origin (TE approximately 1.4%) and a very small SD (7.5 g) of biological origin. CONCLUSION tHb-mass shows very low individual oscillations during a training year (<6%), and these oscillations are below the expected changes in tHb-mass due to Herythropoetin (EPO) application or blood infusion (approximately 10%). The high stability of tHb-mass over a period of 1 year suggests that it should be included in an athletes biological passport and analyzed by recently developed probabilistic inference techniques that define subject-based reference ranges.


Clinical Chemistry | 2011

Prevalence of Blood Doping in Samples Collected from Elite Track and Field Athletes

Pierre-Edouard Sottas; Neil Robinson; Giuseppe Fischetto; Gabriel Dollé; Juan Manuel Alonso; Martial Saugy

BACKGROUND No reliable estimate of the prevalence of doping in elite sports has been published. Since 2001, the international governing body for athletics has implemented a blood-testing program to detect altered hematological profiles in the worlds top-level athletes. METHODS A total of 7289 blood samples were collected from 2737 athletes out of and during international athletic competitions. Data were collected in parallel on each sample, including the age, sex, nationality, and birth date of the athlete; testing date; sport; venue; and instrument technology. Period prevalence of blood-doping in samples was estimated by comparing empirical cumulative distribution functions of the abnormal blood profile score computed for subpopulations with stratified reference cumulative distribution functions. RESULTS In addition to an expected difference between endurance and nonendurance athletes, we found nationality to be the major factor of heterogeneity. Estimates of the prevalence of blood doping ranged from 1% to 48% for subpopulations of samples and a mean of 14% for the entire study population. Extreme cases of secondary polycythemia highlighted the health risks associated with blood manipulations. CONCLUSIONS When applied at a population level, in this case the population of samples, hematological data can be used to estimate period prevalence of blood doping in elite sports. We found that the worlds top-level athletes are not only heterogeneous in physiological and anthropometric factors but also in their doping behavior, with contrasting attitudes toward doping between countries. When applied at the individual level, the same biomarkers, as formalized in the Athlete Biological Passport paradigm, can be used in analysis of the observed different physiological characteristics and behavioral heterogeneities.


Transfusion | 2011

Detection of autologous blood doping with adaptively evaluated biomarkers of doping: a longitudinal blinded study.

Torben Pottgiesser; Pierre-Edouard Sottas; Tobias Echteler; Neil Robinson; Markus Umhau; Yorck Olaf Schumacher

BACKGROUND: Since no direct detection method for autologous blood transfusions exists, the most promising attempt is the Athlete Biological Passport (ABP) and its adaptive model that enables a longitudinal monitoring of hematologic measures to identify patterns of blood manipulations. The purpose therefore was to evaluate the performance of this adaptive model for the detection of autologous blood transfusions in a longitudinal blinded setting.


Steroids | 2009

Substantial advantage of a combined Bayesian and genotyping approach in testosterone doping tests

Jenny J. Schulze; Jonas Lundmark; Mats Garle; Lena Ekström; Pierre-Edouard Sottas; Anders Rane

Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individuals true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.


Bioanalysis | 2012

Current implementation and future of the Athlete Biological Passport

Pierre-Edouard Sottas; Alan Vernec

During the last four decades, the main instrument at the disposal of anti-doping authorities has been the detection of prohibited substances in biological samples collected from athletes. However, the availability of substances identical to those produced by the human body, such as EPO, testosterone and GH, necessitated a new drug-testing paradigm. From the early 2000s, the Athlete Biological Passport (ABP) was proposed as an alternative means to drug testing. Doping leaves a characteristic fingerprint on the biology of the athlete and the ABP is used to prove the act of doping from the detection of that fingerprint. Once a biomarker of doping is implemented in the ABP, it will continue to remain valid and should be able to detect the physiological changes brought on by performance-enhancing drugs that have not yet been invented. However, the sensitivity of the ABP to detect doping is limited if the physiological result of a low level of doping remains within the individuals own reference range. Recent advances in proteomics and metabolomics show the huge potential of the ABP.


Clinical Endocrinology | 2011

A pilot study on subject-based comprehensive steroid profiling: novel biomarkers to detect testosterone misuse in sports

Pieter Van Renterghem; Peter Van Eenoo; Pierre-Edouard Sottas; Martial Saugy; Frans Delbeke

Context  Until now, the testosterone/epitestosterone (T/E) ratio is the main marker for the detection of testosterone (T) misuse in athletes. As this marker can be influenced by a number of confounding factors, additional steroid profile parameters indicating T misuse can provide substantiating evidence of doping with endogenous steroids. The evaluation of a steroid profile is currently based upon population statistics. As large inter‐individual variations exist, a paradigm shift towards subject‐based references is ongoing in doping analysis.


Drug Testing and Analysis | 2010

Subject-based steroid profiling and the determination of novel biomarkers for DHT and DHEA misuse in sports

Pieter Van Renterghem; Peter Van Eenoo; Pierre-Edouard Sottas; Martial Saugy; Frans Delbeke

Doping with natural steroids can be detected by evaluating the urinary concentrations and ratios of several endogenous steroids. Since these biomarkers of steroid doping are known to present large inter-individual variations, monitoring of individual steroid profiles over time allows switching from population-based towards subject-based reference ranges for improved detection. In an Athlete Biological Passport (ABP), biomarkers data are collated throughout the athletes sporting career and individual thresholds defined adaptively. For now, this approach has been validated on a limited number of markers of steroid doping, such as the testosterone (T) over epitestosterone (E) ratio to detect T misuse in athletes. Additional markers are required for other endogenous steroids like dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). By combining comprehensive steroid profiles composed of 24 steroid concentrations with Bayesian inference techniques for longitudinal profiling, a selection was made for the detection of DHT and DHEA misuse. The biomarkers found were rated according to relative response, parameter stability, discriminative power, and maximal detection time. This analysis revealed DHT/E, DHT/5β-androstane-3α,17β-diol and 5α-androstane-3α,17β-diol/5β-androstane-3α,17β-diol as best biomarkers for DHT administration and DHEA/E, 16α-hydroxydehydroepiandrosterone/E, 7β-hydroxydehydroepiandrosterone/E and 5β-androstane-3α,17β-diol/5α-androstane-3α,17β-diol for DHEA. The selected biomarkers were found suitable for individual referencing. A drastic overall increase in sensitivity was obtained. The use of multiple markers as formalized in an Athlete Steroidal Passport (ASP) can provide firm evidence of doping with endogenous steroids.

Collaboration


Dive into the Pierre-Edouard Sottas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge