Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martial Saugy is active.

Publication


Featured researches published by Martial Saugy.


European Journal of Applied Physiology | 1997

Effect of short-term creatine supplementation on renal responses in men.

Jacques Poortmans; Hélène Auquier; V. Renaut; A. Durussel; Martial Saugy; Guy R. Brisson

Abstract There is an increasing utilisation of oral creatine (Cr) supplementation among athletes who hope to enhance their performance but it is not known if this ingestion has any detrimental effect on the kidney. Five healthy men ingested either a placebo or 20 g of creatine monohydrate per day for 5 consecutive days. Blood samples and urine collections were analysed for Cr and creatinine (Crn) determination after each experimental session. Total protein and albumin urine excretion rates were also determined. Oral Cr supplementation had a significant incremental impact on arterial content (3.7 fold) and urine excretion rate (90 fold) of this compound. In contrast, arterial and urine Crn values were not affected by the Cr ingestion. The glomerular filtration rate (Crn clearance) and the total protein and albumin excretion rates remained within the normal range. In conclusion, this investigation showed that short-term oral Cr supplementation does not appear to have any detrimental effect on the renal responses of healthy men.


British Journal of Sports Medicine | 2006

Human growth hormone doping in sport

Martial Saugy; Neil Robinson; Christophe Saudan; Norbert Baume; Lidia Avois; Patrice Mangin

Background and objectives: Recombinant human growth hormone (rhGH) has been on the list of forbidden substances since availability of its recombinant form improved in the early 1990s. Although its effectiveness in enhancing physical performance is still unproved, the compound is likely used for its potential anabolic effect on the muscle growth, and also in combination with other products (androgens, erythropoietin, etc.). The degree of similarity between the endogenous and the recombinant forms, the pulsatile secretion and marked interindividual variability makes detection of doping difficult. Two approaches proposed to overcome this problem are: the indirect method, which measures a combination of several factors in the biological cascade affected by administration of GH; and the direct method, which measures the difference between the circulating and the recombinant (represented by the unique 22 kD molecule) forms of GH. This article gives an overview of what is presently known about hGH in relation to sport. The available methods of detection are also evaluated. Methods: Review of the literature on GH in relation to exercise, and its adverse effects and methods of detection when used for doping. Results and conclusion: The main effects of exercise on hGH production and the use and effects of rhGH in athletes are discussed. Difficulties encountered by laboratories to prove misuse of this substance by both indirect and direct analyses are emphasised. The direct method currently seems to have the best reliability, even though the time window of detection is too short. hGH doping is a major challenge in the fight against doping. The effect of exercise on hGH and its short half-life are still presenting difficulties during doping analysis. To date the most promising method appears to be the direct approach utilising immunoassays.


Clinical Chemistry | 2011

The Athlete Biological Passport

Pierre-Edouard Sottas; Neil Robinson; Olivier Rabin; Martial Saugy

BACKGROUND In elite sports, the growing availability of doping substances identical to those naturally produced by the human body seriously limits the ability of drug-testing regimes to ensure fairness and protection of health. CONTENT The Athlete Biological Passport (ABP), the new paradigm in testing based on the personalized monitoring of biomarkers of doping, offers the enormous advantage of being independent of this endless pharmaceutical race. Doping triggers physiological changes that provide physiological enhancements. In the same way that disease-related biomarkers are invaluable tools that assist physicians in the diagnosis of pathology, specifically selected biomarkers can be used to detect doping. SUMMARY The ABP is a new testing paradigm with immense potential value in the current climate of rapid advancement in biomarker discovery. In addition to its original aim of providing proof of a doping offense, the ABP can also serve as a platform for a Rule of Sport, with the presentation before competition of the ABP to objectively demonstrate that the athlete will participate in a healthy physiological condition that is unaltered by performance-enhancing drugs. Finally, the decision-support system used today for the biological monitoring of world top-level athletes can also be advantageously transferred to other areas of clinical practice to reach the goal of personalized medicine.


Journal of Chromatography A | 2009

Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry

Flavia Badoud; Elia Grata; Laurent Perrenoud; L Avois; Martial Saugy; Serge Rudaz; Jean-Luc Veuthey

The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.


Handbook of experimental pharmacology | 2010

The Athlete’s Biological Passport and Indirect Markers of Blood Doping

Pierre-Edouard Sottas; Neil Robinson; Martial Saugy

In the fight against doping, disciplinary sanctions have up to now been primarily based on the discovery of an exogenous substance in a biological fluid of the athlete. However, indirect markers of altered erythropoiesis can provide enough evidence to differentiate between natural variations and blood doping. Forensic techniques for the evaluation of the evidence, and more particularly Bayesian networks, allow antidoping authorities to take into account firstly the natural variations of indirect markers - through a mathematical formalism based on probabilities - and secondly the complexity due to the multiplicity of causes and confounding effects - through a distributed and flexible graphical representation. The information stored in an athletes biological passport may be then sufficient to launch a disciplinary procedure against the athlete. The strength of the passport is that it relies on a statistical approach based on sound empirical testing on large populations and justifiable protocols. Interestingly, its introduction coincides with the paradigm shift that is materializing today in forensic identification science, from archaic assumptions of absolute certainty and perfection to a more defensible empirical and probabilistic foundation.


Journal of Chromatography A | 2010

Characterization and classification of matrix effects in biological samples analyses

Ivano Marchi; Véronique Viette; Flavia Badoud; Marc Fathi; Martial Saugy; Serge Rudaz; Jean-Luc Veuthey

An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.


Journal of Chromatography A | 2010

Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. II: Confirmatory analysis.

Flavia Badoud; Elia Grata; Laurent Perrenoud; Martial Saugy; Serge Rudaz; Jean-Luc Veuthey

For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine.


British Journal of Sports Medicine | 2006

Testosterone and doping control.

Christophe Saudan; Norbert Baume; Neil Robinson; L Avois; Patrice Mangin; Martial Saugy

Background and objectives: Anabolic steroids are synthetic derivatives of testosterone, modified to enhance its anabolic actions (promotion of protein synthesis and muscle growth). They have numerous side effects, and are on the International Olympic Committee’s list of banned substances. Gas chromatography-mass spectrometry allows identification and characterisation of steroids and their metabolites in the urine but may not distinguish between pharmaceutical and natural testosterone. Indirect methods to detect doping include determination of the testosterone/epitestosterone glucuronide ratio with suitable cut-off values. Direct evidence may be obtained with a method based on the determination of the carbon isotope ratio of the urinary steroids. This paper aims to give an overview of the use of anabolic-androgenic steroids in sport and methods used in anti-doping laboratories for their detection in urine, with special emphasis on doping with testosterone. Methods: Review of the recent literature of anabolic steroid testing, athletic use, and adverse effects of anabolic-androgenic steroids. Results: Procedures used for detection of doping with endogenous steroids are outlined. The World Anti-Doping Agency provided a guide in August 2004 to ensure that laboratories can report, in a uniform way, the presence of abnormal profiles of urinary steroids resulting from the administration of testosterone or its precursors, androstenediol, androstenedione, dehydroepiandrosterone or a testosterone metabolite, dihydrotestosterone, or a masking agent, epitestosterone. Conclusions: Technology developed for detection of testosterone in urine samples appears suitable when the substance has been administered intramuscularly. Oral administration leads to rapid pharmacokinetics, so urine samples need to be collected in the initial hours after intake. Thus there is a need to find specific biomarkers in urine or plasma to enable detection of long term oral administration of testosterone.


Scandinavian Journal of Medicine & Science in Sports | 2006

Research of stimulants and anabolic steroids in dietary supplements

Norbert Baume; N. Mahler; Matthias Kamber; Patrice Mangin; Martial Saugy

The purpose of this study was to analyze the composition of 103 dietary supplements bought on the internet. The supplements were dispatched in four different categories according to their announced contents [creatine, prohormones, “mental enhancers” and branched chain amino acids (BCAA)]. All the supplements were screened for the presence of stimulants and main anabolic steroids parent compounds. At the same time, the research was focused on the precursors and metabolites of testosterone and nandrolone.


Endocrinology and Metabolism Clinics of North America | 2010

Endogenous Steroid Profiling in the Athlete Biological Passport

Pierre-Edouard Sottas; Martial Saugy; Christophe Saudan

The Athlete Biological Passport (ABP) is an individual electronic document that collects data regarding a specific athlete that is useful in differentiating between natural physiologic variations of selected biomarkers and deviations caused by artificial manipulations. A subsidiary of the endocrine module of the ABP, that which here is called Athlete Steroidal Passport (ASP), collects data on markers of an altered metabolism of endogenous steroidal hormones measured in urine samples. The ASP aims to identify not only doping with anabolic-androgenic steroids, but also most indirect steroid doping strategies such as doping with estrogen receptor antagonists and aromatase inhibitors. Development of specific markers of steroid doping, use of the athletes previous measurements to define individual limits, with the athlete becoming his or her own reference, the inclusion of heterogeneous factors such as the UDPglucuronosyltransferase B17 genotype of the athlete, the knowledge of potentially confounding effects such as heavy alcohol consumption, the development of an external quality control system to control analytical uncertainty, and finally the use of Bayesian inferential methods to evaluate the value of indirect evidence have made the ASP a valuable alternative to deter steroid doping in elite sports. The ASP can be used to target athletes for gas chromatography/combustion/ isotope ratio mass spectrometry (GC/C/IRMS) testing, to withdraw temporarily the athlete from competing when an abnormality has been detected, and ultimately to lead to an antidoping infraction if that abnormality cannot be explained by a medical condition. Although the ASP has been developed primarily to ensure fairness in elite sports, its application in endocrinology for clinical purposes is straightforward in an evidence-based medicine paradigm.

Collaboration


Dive into the Martial Saugy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raul Nicoli

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Serge Rudaz

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge