Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Rivailler is active.

Publication


Featured researches published by Pierre Rivailler.


Science | 2009

Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans

Rebecca Garten; C. Todd Davis; Colin A. Russell; Bo Shu; Stephen Lindstrom; Amanda Balish; Wendy Sessions; Xiyan Xu; Eugene Skepner; Varough Deyde; Margaret Okomo-Adhiambo; Larisa V. Gubareva; John Barnes; Catherine B. Smith; Shannon L. Emery; Michael J. Hillman; Pierre Rivailler; James A. Smagala; Miranda de Graaf; David F. Burke; Ron A. M. Fouchier; Claudia Pappas; Celia Alpuche-Aranda; Hugo López-Gatell; Hiram Olivera; Irma López; Christopher A. Myers; Dennis J. Faix; Patrick J. Blair; Cindy Yu

Generation of Swine Flu As the newly emerged influenza virus starts its journey to infect the worlds human population, the genetic secrets of the 2009 outbreak of swine influenza A(H1N1) are being revealed. In extensive phylogenetic analyses, Garten et al. (p. 197, published online 22 May) confirm that of the eight elements of the virus, the basic components encoded by the hemagglutinin, nucleoprotein, and nonstructural genes originated in birds and transferred to pigs in 1918. Subsequently, these formed a triple reassortant with the RNA polymerase PB1 that transferred from birds in 1968 to humans and then to pigs in 1998, coupled with RNA polymerases PA and PB2 that transferred from birds to pigs in 1998. The neuraminidase and matrix protein genes that complete the virus came from birds and entered pigs in 1979. The analysis offers insights into drug susceptibility and virulence, as well as raising the possibility of hitherto unknown factors determining host specificity. A significant question is, what is the potential for the H1 component of the current seasonal flu vaccine to act as a booster? Apart from the need for ongoing sequencing to monitor for the emergence of new reassortants, future pig populations need to be closely monitored for emerging influenza viruses. Evolutionary analysis suggests a triple reassortant avian-to-pig origin for the 2009 influenza A(H1N1) outbreak. Since its identification in April 2009, an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The lack of similarity between the 2009 A(H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Its low genetic diversity suggests that the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predictive of adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting that previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).


Proceedings of the National Academy of Sciences of the United States of America | 2012

A distinct lineage of influenza A virus from bats

Suxiang Tong; Yan Li; Pierre Rivailler; Christina Conrardy; Danilo A. Alvarez Castillo; Li-Mei Chen; Sergio Recuenco; James A. Ellison; Charles T. Davis; Ian A. York; Amy S. Turmelle; David Moran; Shannon Rogers; Mang Shi; Ying Tao; Michael R. Weil; Kevin Tang; Lori A. Rowe; Scott Sammons; Xiyan Xu; Michael Frace; Kim A. Lindblade; Nancy J. Cox; Larry J. Anderson; Charles E. Rupprecht; Ruben O. Donis

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


Journal of Virology | 2002

Complete Nucleotide Sequence of the Rhesus Lymphocryptovirus: Genetic Validation for an Epstein-Barr Virus Animal Model

Pierre Rivailler; Hua Jiang; Young-gyu Cho; Carol Quink; Fred Wang

ABSTRACT We sequenced the rhesus lymphocryptovirus (LCV) genome in order to determine its genetic similarity to Epstein-Barr virus (EBV). The rhesus LCV encodes a repertoire identical to that of EBV, with 80 open reading frames, including cellular interleukin-10, bcl-2, and colony-stimulating factor 1 receptor homologues and an equivalent set of viral glycoproteins. The highly conserved rhesus LCV gene repertoire provides a unique animal model for the study of EBV pathogenesis.


Journal of Virology | 2002

Complete Genomic Sequence of an Epstein-Barr Virus-Related Herpesvirus Naturally Infecting a New World Primate: a Defining Point in the Evolution of Oncogenic Lymphocryptoviruses

Pierre Rivailler; Young-gyu Cho; Fred Wang

ABSTRACT Callitrichine herpesvirus 3 (CalHV-3) was isolated from a B-cell lymphoma arising spontaneously in the New World primate Callithrix jacchus, the common marmoset. Partial genomic sequence analysis definitively identified CalHV-3 as a member of the Epstein-Barr virus (EBV)-related lymphocryptovirus (LCV) genus and extended the known host range of LCVs beyond humans and Old World nonhuman primates. We have now completed the first genomic sequence of an LCV infecting a New World primate by describing the unique short region, the major internal repeat, and a portion of the unique long region. This portion of the genome contains the putative latent origin of replication and 13 additional open reading frames (ORFs), 5 of which show no homology to any viral or cell genes. One of the novel genes, C5, is a positional homologue for the transformation-essential EBV gene EBNA-2. The marmoset LCV genome is also notable for the absence of viral interleukin-10 and small nonpolyadenylated RNA homologues. Marmoset LCV transcripts encoding putative latent infection nuclear proteins have a common leader sequence that is spliced from the major internal repeat in a manner similar to that of the EBV EBNA-LP, suggesting strong conservation of a common promoter and splicing of these latent infection mRNAs. An EBV LMP2A-like spliced transcript crossing the terminal repeats encodes a unique ORF, C7, with multiple transmembrane domains and tyrosine kinase phosphorylation sites functionally reminiscent of EBV LMP2A. However, the carboxy-terminal location of the candidate phosphotyrosine residues is more reminiscent of the Kaposis sarcoma-associated herpesvirus K15 gene and provides potential evidence of an evolutionary transition from rhadinoviruses to lymphocryptoviruses. The unusual gene repertoire of the marmoset LCV differentiates ancestral viral genes likely present in an LCV progenitor from viral genes acquired later as primates and LCV coevolved, providing a defining point in the evolution of oncogenic LCVs.


Genome Research | 2014

Genomic analysis of the causative agents of coccidiosis in domestic chickens

Adam J. Reid; Damer P. Blake; Hifzur Rahman Ansari; Karen J. Billington; Hilary P. Browne; Josephine M. Bryant; Matthew Dunn; Stacy S. Hung; Fumiya Kawahara; Diego Miranda-Saavedra; Tareq M. Malas; Tobias Mourier; Hardeep Naghra; Mridul Nair; Thomas D. Otto; Neil D. Rawlings; Pierre Rivailler; Alejandro Sanchez-Flores; Mandy Sanders; Chandra Subramaniam; Yea-Ling Tay; Yong Woo; Xikun Wu; Bart Barrell; Paul H. Dear; Christian Doerig; Arthur Gruber; Alasdair Ivens; John Parkinson; Marie-Adele Rajandream

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.


Journal of Virology | 2006

Genomic Sequence of Rhesus Cytomegalovirus 180.92: Insights into the Coding Potential of Rhesus Cytomegalovirus

Pierre Rivailler; Amitinder Kaur; R. Paul Johnson; Fred Wang

ABSTRACT A pathogenic isolate of rhesus cytomegalovirus (rhCMV 180.92) was cloned, sequenced, and annotated. Comparisons with the published rhCMV 68.1 genome revealed 8 open reading frames (ORFs) in isolate 180.92 that are absent in 68.1, 10 ORFs in 68.1 that are absent in 180.92, and 34 additional ORFs that were not previously annotated. Most of the differences appear to be due to genetic rearrangements in both isolates from a region that is frequently altered in human CMV (hCMV) during in vitro passage. These results indicate that the rhCMV ORF repertoire is larger than previously recognized. Like hCMV, understanding of the complete coding capacity of rhCMV is complicated by genomic instability and may require comparisons with additional isolates in vitro and in vivo.


Virology | 2012

Evolution of highly pathogenic avian influenza (H5N1) virus populations in Vietnam between 2007 and 2010

Tung Nguyen; Pierre Rivailler; C. Todd Davis; Do Thi Hoa; Amanda Balish; Nguyen Hoang Dang; Joyce Jones; Dam Thi Vui; Natosha Simpson; Ngo Thu Huong; Bo Shu; Rosette Loughlin; Karen Ferdinand; Stephen Lindstrom; Ian A. York; Alexander Klimov; Ruben O. Donis

We report on the genetic analysis of 213 highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry in Vietnam between 2007 and 2010. Phylogenetic analyses of the viral genomes revealed 38 distinct viral genotypes, 29 were novel and 9 were reported in Vietnam or neighboring countries in recent years. Viruses from only six genotypes persisted beyond one season or year. Thus, most reassortant viruses were transient, suggesting that such genotypes lacked significant fitness advantages. Viruses with clade 2.3.2.1 HA were re-introduced into Vietnam in 2009 and their prevalence rose steeply towards the end of 2010. Clade 2.3.4-like viruses (genotype V) were predominant in northern Vietnam and caused the majority of zoonotic infections, whereas clade 1.1 (genotype Z) viruses were only detected in the Mekong delta region, in southern Vietnam. Antigenic analysis of representative viruses from the four clades indicated substantial drift.


PLOS ONE | 2013

Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells.

Maria E. Ariza; Pierre Rivailler; Ronald Glaser; Min Chen; Marshall V. Williams

We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target of the EBV-encoded dUTPase. However, the role of EBV-encoded dUTPase in DC activation/function and its potential contribution to the inflammatory cellular milieu characteristic of EBV-associated diseases remains poorly understood. In the present study, we demonstrate that EBV-encoded dUTPase significantly altered the expression of genes involved in oncogenesis, inflammation and viral defense mechanisms in human primary DCs by microarray analysis. Proteome array studies revealed that EBV-encoded dUTPase modulates DC immune responses by inducing the secretion of pro-inflammatory TH1/TH17 cytokines. More importantly, we demonstrate that EBV-encoded dUTPase is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce NF-κB activation and cytokine secretion in primary DCs and peripheral blood mononuclear cells (PBMCs). Interestingly, the production of pro-inflammatory cytokines in DCs and PBMCs was TLR2-dependent. Together these findings suggest that the EBV-encoded dUTPase may act as an intercellular signaling molecule capable of modulating the cellular microenvironment and thus, it may be important in the pathophysiology of EBV related diseases.


Virology | 2010

Evolution of canine and equine influenza (H3N8) viruses co-circulating between 2005 and 2008

Pierre Rivailler; Ijeoma A. Perry; Yunho Jang; C. Todd Davis; Li-Mei Chen; Edward J. Dubovi; Ruben O. Donis

Influenza virus, subtype H3N8, was transmitted from horses to greyhound dogs in 2004 and subsequently spread to pet dog populations. The co-circulation of H3N8 viruses in dogs and horses makes bi-directional virus transmission between these animal species possible. To understand the dynamics of viral transmission, we performed virologic surveillance in dogs and horses between 2005 and 2008 in the United States. The genomes of influenza A H3N8 viruses isolated from 36 dogs and horses were sequenced to determine their origin and evolution. Phylogenetic analyses revealed that H3N8 influenza viruses from horses and dogs were monophyletic and distinct. There was no evidence of canine influenza virus infection in horses with respiratory disease or new introductions of equine influenza viruses into dogs in the United States. Analysis of a limited number of equine influenza viruses suggested substantial separation in the transmission of viruses causing clinically apparent influenza in dogs and horses.


Molecular Biology and Evolution | 2008

Synonymous and Nonsynonymous Polymorphisms versus Divergences in Bacterial Genomes

Austin L. Hughes; Robert Friedman; Pierre Rivailler; Jeffrey O. French

Comparison of the ratio of nonsynonymous to synonymous polymorphisms within species with the ratio of nonsynonymous to synonymous substitutions between species has been widely used as a supposed indicator of positive Darwinian selection, with the ratio of these 2 ratios being designated as a neutrality index (NI). Comparison of genome-wide polymorphism within 12 species of bacteria with divergence from an outgroup species showed substantial differences in NI among taxa. A low level of nonsynonymous polymorphism at a locus was the best predictor of NI < 1, rather than a high level of nonsynonymous substitution between species. Moreover, genes with NI < 1 showed a strong tendency toward the occurrence of rare nonsynonymous polymorphisms, as expected under the action of ongoing purifying selection. Thus, our results are more consistent with the hypothesis that a high relative rate of between-species nonsynonymous substitution reflects mainly the action of purifying selection within species to eliminate slightly deleterious mutations rather than positive selection between species. This conclusion is consistent with previous results highlighting an important role of slightly deleterious variants in bacterial evolution and suggests caution in the use of the McDonald-Kreitman test and related statistics as tests of positive selection.

Collaboration


Dive into the Pierre Rivailler's collaboration.

Top Co-Authors

Avatar

Ruben O. Donis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Fred Wang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

C. Todd Davis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Amanda Balish

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Carol Quink

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Li-Mei Chen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Alexander Klimov

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Bo Shu

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ian A. York

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Paul A. Rota

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge