Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pilar Martin-Marcos is active.

Publication


Featured researches published by Pilar Martin-Marcos.


Journal of Molecular Biology | 2009

eIF1 controls multiple steps in start codon recognition during eukaryotic translation initiation

Jagpreet S. Nanda; Yuen Nei Cheung; Julie E. Takacs; Pilar Martin-Marcos; Adesh K. Saini; Alan G. Hinnebusch; Jon R. Lorsch

Eukaryotic translation initiation factor (eIF) 1 is a central mediator of start codon recognition. Dissociation of eIF1 from the preinitiation complex (PIC) allows release of phosphate from the G-protein factor eIF2, triggering downstream events in initiation. Mutations that weaken binding of eIF1 to the PIC decrease the fidelity of start codon recognition (Sui(-) phenotype) by allowing increased eIF1 release at non-AUG codons. Consistent with this, overexpression of these mutant proteins suppresses their Sui(-) phenotypes. Here, we have examined mutations at the penultimate residue of eIF1, G107, that produce Sui(-) phenotypes without increasing the rate of eIF1 release. We provide evidence that, in addition to its role in gating phosphate release, dissociation of eIF1 triggers conversion from an open, scanning-competent state of the PIC to a stable, closed one. We also show that eIF5 antagonizes binding of eIF1 to the complex and that key interactions of eIF1 with its partners are modulated by the charge at and around G107. Our data indicate that eIF1 plays multiple roles in start codon recognition and suggest that prior to AUG recognition it prevents eIF5 from binding to a key site in the PIC required for triggering downstream events.


Cell | 2014

Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex

Tanweer Hussain; Jose L. Llácer; Israel S. Fernández; Antonio Munoz; Pilar Martin-Marcos; Christos G. Savva; Jon R. Lorsch; Alan G. Hinnebusch; V. Ramakrishnan

Summary During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2α, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon.


Molecular and Cellular Biology | 2011

Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons.

Pilar Martin-Marcos; Yuen-Nei Cheung; Alan G. Hinnebusch

ABSTRACT Yeast eIF1 inhibits initiation at non-AUG triplets, but it was unknown whether it also discriminates against AUGs in suboptimal context. As in other eukaryotes, the yeast gene encoding eIF1 (SUI1) contains an AUG in poor context, which could underlie translational autoregulation. Previously, eIF1 mutations were identified that increase initiation at UUG codons (Sui− phenotype), and we obtained mutations with the opposite phenotype of suppressing UUG initiation (Ssu− phenotype). Remarkably, Sui− mutations in eukaryotic translation initiation factor 1 (eIF1), eIF1A, and eIF2β all increase SUI1 expression in a manner diminished by introducing the optimal context at the SUI1 AUG, whereas Ssu− mutations in eIF1 and eIF1A decrease SUI1 expression with the native, but not optimal, context present. Therefore, discrimination against weak context depends on specific residues in eIFs 1, 1A, and 2β that also impede selection of non-AUGs, suggesting that context nucleotides and AUG act coordinately to stabilize the preinitiation complex. Although eIF1 autoregulates by discriminating against poor context in yeast and mammals, this mechanism does not prevent eIF1 overproduction in yeast, accounting for the hyperaccuracy phenotype afforded by SUI1 overexpression.


Molecular and Cellular Biology | 2007

Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation

Pilar Martin-Marcos; Alan G. Hinnebusch; Mercedes Tamame

ABSTRACT We identified a mutation in the 60S ribosomal protein L33A (rpl33a-G76R) that elicits derepression of GCN4 translation (Gcd− phenotype) by allowing scanning preinitiation complexes to bypass inhibitory upstream open reading frame 4 (uORF4) independently of prior uORF1 translation and reinitiation. At 37°C, rpl33a-G76R confers defects in 60S biogenesis comparable to those produced by the deletion of RPL33A (ΔA). At 28°C, however, the 60S biogenesis defect is less severe in rpl33a-G76R than in ΔA cells, yet rpl33a-G76R confers greater derepression of GCN4 and a larger reduction in general translation. Hence, it appears that rpl33a-G76R has a stronger effect on ribosomal-subunit joining than does a comparable reduction of wild-type 60S levels conferred by ΔA. We suggest that rpl33a-G76R alters the 60S subunit in a way that impedes ribosomal-subunit joining and thereby allows 48S rRNA complexes to abort initiation at uORF4, resume scanning, and initiate downstream at GCN4. Because overexpressing tRNAiMet suppresses the Gcd− phenotype of rpl33a-G76R cells, dissociation of tRNAiMet from the 40S subunit may be responsible for abortive initiation at uORF4 in this mutant. We further demonstrate that rpl33a-G76R impairs the efficient processing of 35S and 27S pre-rRNAs and reduces the accumulation of all four mature rRNAs, indicating an important role for L33 in the biogenesis of both ribosomal subunits.


Cell Reports | 2012

The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.

Rafael E. Luna; Haribabu Arthanari; Hiroyuki Hiraishi; Jagpreed Nanda; Pilar Martin-Marcos; Michelle A. Markus; Barak Akabayov; Alexander G. Milbradt; Lunet E. Luna; Hee-Chan Seo; Sven G. Hyberts; Amr F. Fahmy; Mikhail Reibarkh; David Miles; Patrick R. Hagner; Elizabeth O'Day; Tingfang Yi; Assen Marintchev; Alan G. Hinnebusch; John R. Lorsch; Katsura Asano; Gerhard Wagner

Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTDs dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.


Journal of Biological Chemistry | 2013

β-Hairpin Loop of Eukaryotic Initiation Factor 1 (eIF1) Mediates 40 S Ribosome Binding to Regulate Initiator tRNAMet Recruitment and Accuracy of AUG Selection in Vivo

Pilar Martin-Marcos; Jagpreet S. Nanda; Rafael E. Luna; Gerhard Wagner; Jon R. Lorsch; Alan G. Hinnebusch

Background: Start codon selection requires eIF1 dissociation from its 40 S-binding site. Results: eIF1 residues in β-hairpin loop-1 and helix α1 make functionally critical contacts with the 40 S subunit. Conclusion: Direct 40 S contacts of eIF1 regulate the rate of Met-tRNAi recruitment and block non-AUG recognition. Significance: eIF1s direct contacts with the 40 S subunit are crucial for AUG recognition in vivo. Recognition of the translation initiation codon is thought to require dissociation of eIF1 from the 40 S ribosomal subunit, enabling irreversible GTP hydrolysis (Pi release) by the eIF2·GTP·Met-tRNAi ternary complex (TC), rearrangement of the 40 S subunit to a closed conformation incompatible with scanning, and stable binding of Met-tRNAi to the P site. The crystal structure of a Tetrahymena 40 S·eIF1 complex revealed several basic amino acids in eIF1 contacting 18 S rRNA, and we tested the prediction that their counterparts in yeast eIF1 are required to prevent premature eIF1 dissociation from scanning ribosomes at non-AUG triplets. Supporting this idea, substituting Lys-60 in helix α1, or either Lys-37 or Arg-33 in β-hairpin loop-1, impairs binding of yeast eIF1 to 40 S·eIF1A complexes in vitro, and it confers increased initiation at UUG codons (Sui− phenotype) or lethality, in a manner suppressed by overexpressing the mutant proteins or by an eIF1A mutation (17–21) known to impede eIF1 dissociation in vitro. The eIF1 Sui− mutations also derepress translation of GCN4 mRNA, indicating impaired ternary complex loading, and this Gcd− phenotype is likewise suppressed by eIF1 overexpression or the 17–21 mutation. These findings indicate that direct contacts of eIF1 with 18 S rRNA seen in the Tetrahymena 40 S·eIF1 complex are crucial in yeast to stabilize the open conformation of the 40 S subunit and are required for rapid TC loading and ribosomal scanning and to impede rearrangement to the closed complex at non-AUG codons. Finally, we implicate the unstructured N-terminal tail of eIF1 in blocking rearrangement to the closed conformation in the scanning preinitiation complex.


RNA | 2014

Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy

Pilar Martin-Marcos; Jagpreet S. Nanda; Rafael E. Luna; Fan Zhang; Adesh K. Saini; Vera A. Cherkasova; Gerhard Wagner; Jon R. Lorsch; Alan G. Hinnebusch

In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and β-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.


RNA | 2011

Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery

Julie E. Takacs; Timothy Brian Neary; Nicholas T. Ingolia; Adesh K. Saini; Pilar Martin-Marcos; Jerry Pelletier; Alan G. Hinnebusch; Jon R. Lorsch

Translation initiation in eukaryotes involves more than a dozen protein factors. Alterations in six factors have been found to reduce the fidelity of start codon recognition by the ribosomal preinitiation complex in yeast, a phenotype referred to as Sui(-). No small molecules are known that affect the fidelity of start codon recognition. Such compounds would be useful tools for probing the molecular mechanics of translation initiation and its regulation. To find compounds with this effect, we set up a high-throughput screen using a dual luciferase assay in S. cerevisiae. Screening of over 55,000 compounds revealed two structurally related molecules that decrease the fidelity of start codon selection by approximately twofold in the dual luciferase assay. This effect was confirmed using additional in vivo assays that monitor translation from non-AUG start codons. Both compounds increase translation of a natural upstream open reading frame previously shown to initiate translation at a UUG. The compounds were also found to exacerbate increased use of UUG as a start codon (Sui(-) phenotype) conferred by haploinsufficiency of wild-type eukaryotic initiation factor (eIF) 1, or by mutation in eIF1. Furthermore, the effects of the compounds are suppressed by overexpressing eIF1, which is known to restore the fidelity of start codon selection in strains harboring Sui(-) mutations in various other initiation factors. Together, these data strongly suggest that the compounds affect the translational machinery itself to reduce the accuracy of selecting AUG as the start codon.


Genetics | 2011

Guanine Nucleotide Pool Imbalance Impairs Multiple Steps of Protein Synthesis and Disrupts GCN4 Translational Control in Saccharomyces cerevisiae

Diego Iglesias-Gato; Pilar Martin-Marcos; María Ángeles Santos; Alan G. Hinnebusch; Mercedes Tamame

Purine nucleotides are structural components of the genetic material, function as phosphate donors, participate in cellular signaling, are cofactors in enzymatic reactions, and constitute the main carriers of cellular energy. Thus, imbalances in A/G nucleotide biosynthesis affect nearly the whole cellular metabolism and must be tightly regulated. We have identified a substitution mutation (G388D) that reduces the activity of the GMP synthase Gua1 in budding yeast and the total G-nucleotide pool, leading to precipitous reductions in the GDP/GTP ratio and ATP level in vivo. gua1–G388D strongly reduces the rate of growth, impairs general protein synthesis, and derepresses translation of GCN4 mRNA, encoding a transcriptional activator of diverse amino acid biosynthetic enzymes. Although processing of pre-tRNAiMet and other tRNA precursors, and the aminoacylation of tRNAiMet are also strongly impaired in gua1–G388D cells, tRNAiMet-containing complexes with the macromolecular composition of the eIF2·tRNAiMet.GTP complex (TC) and the multifactor complex (MFC) required for translation initiation accumulate ∼10-fold in gua1–G388D cells and, to a lesser extent, in wild-type (WT) cells treated with 6-azauracil (6AU). Consistently, addition of an external supply of guanine reverts all the phenotypes of gua1–G388D cells, but not those of gua1–G388D Δhpt1 mutants unable to refill the internal GMP pool through the salvage pathway. These and other findings suggest that a defect in guanine nucleotide biosynthesis evokes a reduction in the rate of general protein synthesis by impairing multiple steps of the process, disrupts the gene-specific reinitiation mechanism for translation of GCN4 mRNA and has far-reaching effects in cell biology and metabolism.


Nucleic Acids Research | 2014

Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex

Adesh K. Saini; Jagpreet S. Nanda; Pilar Martin-Marcos; Jinsheng Dong; Fan Zhang; Monika Bhardwaj; Jon R. Lorsch; Alan G. Hinnebusch

eIF5 is the GTPase activating protein (GAP) for the eIF2·GTP·Met-tRNAiMet ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2·GDP·Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui− mutations in numerous factors. We conclude that both of eIF5s functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.

Collaboration


Dive into the Pilar Martin-Marcos's collaboration.

Top Co-Authors

Avatar

Alan G. Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jon R. Lorsch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jagpreet S. Nanda

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Adesh K. Saini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fan Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge