Pilar Palacios
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pilar Palacios.
Molecular Microbiology | 2010
Ana Isabel Rico; Marta García-Ovalle; Pilar Palacios; Mercedes Casanova; Miguel Vicente
Deprivation of FtsN, the last protein in the hierarchy of divisome assembly, causes the disassembly of other elements from the division ring, even extending to already assembled proto‐ring proteins. Therefore the stability and function of the divisome to produce rings active in septation is not guaranteed until FtsN is recruited. Disassembly follows an inverse sequential pathway relative to assembly. In the absence of FtsN, the frequencies of FtsN and FtsQ rings are affected similarly. Among the proto‐ring components, ZipA are more sensitive than FtsZ or FtsA rings. In contrast, removal of FtsZ leads to an almost simultaneous disappearance of the other elements from rings. Although restoration of FtsN allows for a quick reincorporation of ZipA into proto‐rings, the de novo joint assembly of the three components when FtsZ levels are restored to FtsZ‐deprived filaments is even faster. This suggests that the recruitment of ZipA into FtsZ‐FtsA incomplete proto‐rings may require first a period for the reversal of these partial assemblies.
Molecular Microbiology | 1996
Pilar Palacios; Miguel Vicente; Manuel Calderon De La Barca Sanchez
Expression of ftsZ in strain VIP205 is dissociated from its natural promoters, and is under the control of an inducible tac promoter. This abolishes the oscillation in ftsZ transcription observed in the wild type, allowing different levels of ftsZ expression. We demonstrate that this construction does not affect the expression of other genes, and has no effects on replication or nucleoid segregation. A shift in IPTG from 30 μM, that supports division at wild‐type sizes, to lower (6 μM) or higher (100μM) concentrations, indicates that VIP205 cells can divide within a broad range of FtsZ concentrations. Analysis of the morphological parameters during the transition from one IPTG concentration to another suggests that the correct timing of ftsZ expression, and the correct FtsZ concentration, are required for division to occur at normal cell sizes. After a transient division delay during the transition to lower IPTG concentrations, cells in which ftsZ is expressed continuously (yielding 80% of the wild‐type FtsZ levels) divide with the same division time as the wild type, but at the expense of becoming 1.5 times larger. A precise control of ftsZ expression is required for normal division, but the existence of additional regulators to maintain the correct timing during the cell cycle cannot be ruled out.
Journal of Biological Chemistry | 2013
Elisa J. Cabré; Alicia Sánchez-Gorostiaga; Paolo Carrara; Noelia Ropero; Mercedes Casanova; Pilar Palacios; Pasquale Stano; Mercedes Jiménez; Germán Rivas; Miguel Vicente
Background: Before constriction ZipA anchors FtsZ to the E. coli inner membrane as part of the cell division proto-ring. Results: Dynamic FtsZ polymers shrink ZipA-containing vesicles whereas excess of ZipA invaginates the E. coli membrane destroying the permeability barrier. Conclusion: Constriction forces can be evidenced both in bacteria and in vesicles. Significance: Defined bacterial elements reproduce division functions when assembled in vitro. Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles.
Molecular Microbiology | 1998
Klas Flärdh; Pilar Palacios; Miguel Vicente
A transcriptional reporter fusion has been introduced into the chromosomal ftsZ locus in such a way that all transcription that normally reaches ftsZ can be monitored. The new Φ(ftsZ–lacZ ) fusion yields four times more β‐galactosidase activity than a ddlB–ftsQAZ–lacZ fusion on a lambda prophage vector. A strongly polar ddlB ::Ω insertion prevents contributions from signals upstream of the ftsQAZ promoters and decreases transcription of the chromosomal Φ(ftsZ–lacZ ) fusion by 66%, demonstrating that around two‐thirds of total ftsZ transcription require cis‐acting elements upstream of ddlB. We suggest that those elements are distant promoters, and thus that the cell division and cell wall synthesis genes in the dcw gene cluster are to a large extent co‐transcribed. The ddlB ::Ω insertion is lethal unless additional copies of ftsQA are provided or a compensatory decrease in FtsZ synthesis is made. This shows that ddlB is a dispensable gene, and reinforces the critical role of the FtsA/FtsZ ratio in septation. Using the new reporter fusion, it is demonstrated that ftsZ expression is not autoregulated.
Biochimie | 2001
Alicia de la Fuente; Pilar Palacios; Miguel Vicente
Abstract Escherichia coli strains VIP596 and VIP597 have been constructed to compare the amount of transcription of the ftsZ gene derived from proximal promoters in the ddlB-ftsZ region with that originating in the upstream regions of the dcw cluster. Both strains have in common a β-galactosidase reporter fusion located at the ddlB locus, but differ in that VIP597 has a transcription terminator Ω interposon located downstream from lacZ. In addition, these strains have the ddlB, ftsQ, ftsA and ftsZ genes under the control of the IPTG-inducible promoter Ptac, allowing to control artificially ftsZ expression for normal cell division to take place. When β-galactosidase activity was measured in VIP596 and VIP597 and compared to the levels measured in strain VIP407, in which the lacZ reporter fusion is located in the ftsZ gene, they were found to account for nearly 66% of the total transcription entering into ftsZ. This result indicates that the reduction in ftsZ transcription observed when the promoters in the ddlB-ftsA region are disconnected from the upstream sequences of the dcw cluster (as observed by Flardh et al., Mol. Microbiol. 30 (1998) 305-316) in strain VIP490) is the direct consequence of the interruption in the transcription originated upstream and not due to the effect of such sequences on the promoters proximal to ftsZ.
PLOS ONE | 2014
Manuel Pazos; Mercedes Casanova; Pilar Palacios; William Margolin; Paolo Natale; Miguel Vicente
We describe the placement of the cytoplasmic FtsZ protein, an essential component of the division septum, in nucleoid-free Escherichia coli maxicells. The absence of the nucleoid is accompanied in maxicells by degradation of the SlmA protein. This protein, together with the nucleoid, prevents the placement of the septum in the regions occupied by the chromosome by a mechanism called nucleoid occlusion (NO). A second septum placement mechanism, the MinCDE system (Min) involving a pole-to-pole oscillation of three proteins, nonetheless remains active in maxicells. Both Min and NO act on the polymerization of FtsZ, preventing its assembly into an FtsZ-ring except at midcell. Our results show that even in the total absence of NO, Min oscillations can direct placement of FtsZ in maxicells. Deletion of the FtsZ carboxyl terminal domain (FtsZ*), a central hub that receives signals from a variety of proteins including MinC, FtsA and ZipA, produces a Min-insensitive form of FtsZ unable to interact with the membrane-anchoring FtsA and ZipA proteins. This protein produces a totally disorganized pattern of FtsZ localization inside the maxicell cytoplasm. In contrast, FtsZ*-VM, an artificially cytoplasmic membrane-anchored variant of FtsZ*, forms helical or repetitive ring structures distributed along the entire length of maxicells even in the absence of NO. These results show that membrane anchoring is needed to organize FtsZ into rings and underscore the role of the C-terminal hub of FtsZ for their correct placement.
Research in Microbiology | 1991
Miguel Vicente; Pilar Palacios; Ana Dopazo; Teresa Garrido; J. Pla; M. Aldea
Gene products that play a role in the formation of cell septum should be expected to be endowed with a set of specific properties. In principle, septal proteins should be located at the cell envelope. The expression of division genes should ensure the synthesis of septal proteins at levels commensurate with the needs of cell division at different rates of cell duplication. We have results indicating that some fts genes located within the 2.5-min cluster in the Escherichia coli chromosome conform to these predictions.
Mbio | 2016
Alicia Sánchez-Gorostiaga; Pilar Palacios; Rocío Martínez-Arteaga; Manuel Calderon De La Barca Sanchez; Mercedes Casanova; Miguel Vicente
ABSTRACT When deprived of FtsZ, Escherichia coli cells (VIP205) grown in liquid form long nonseptated filaments due to their inability to assemble an FtsZ ring and their failure to recruit subsequent divisome components. These filaments fail to produce colonies on solid medium, in which synthesis of FtsZ is induced, upon being diluted by a factor greater than 4. However, once the initial FtsZ levels are recovered in liquid culture, they resume division, and their plating efficiency returns to normal. The potential septation sites generated in the FtsZ-deprived filaments are not annihilated, and once sufficient FtsZ is accumulated, they all become active and divide to produce cells of normal length. FtsZ-deprived cells accumulate defects in their physiology, including an abnormally high number of unsegregated nucleoids that may result from the misplacement of FtsK. Their membrane integrity becomes compromised and the amount of membrane proteins, such as FtsK and ZipA, increases. FtsZ-deprived cells also show an altered expression pattern, namely, transcription of several genes responding to DNA damage increases, whereas transcription of some ribosomal or global transcriptional regulators decreases. We propose that the changes caused by the depletion of FtsZ, besides stopping division, weaken the cell, diminishing its resiliency to minor challenges, such as dilution stress. IMPORTANCE Our results suggest a role for FtsZ, in addition to its already known effect in the constriction of E. coli, in protecting the nondividing cells against minor stress. This protection can even be exerted when an inactive FtsZ is produced, but it is lost when the protein is altogether absent. These results have implications in fields like synthetic biology or antimicrobial discovery. The construction of synthetic divisomes in the test tube may need to preserve unsuspected roles, such as this newly found FtsZ property, to guarantee the stability of artificial containers. Whereas the effects on viability caused by inhibiting the activity of FtsZ may be partly overcome by filamentation, the absence of FtsZ is not tolerated by E. coli, an observation that may help in the design of effective antimicrobial compounds. Our results suggest a role for FtsZ, in addition to its already known effect in the constriction of E. coli, in protecting the nondividing cells against minor stress. This protection can even be exerted when an inactive FtsZ is produced, but it is lost when the protein is altogether absent. These results have implications in fields like synthetic biology or antimicrobial discovery. The construction of synthetic divisomes in the test tube may need to preserve unsuspected roles, such as this newly found FtsZ property, to guarantee the stability of artificial containers. Whereas the effects on viability caused by inhibiting the activity of FtsZ may be partly overcome by filamentation, the absence of FtsZ is not tolerated by E. coli, an observation that may help in the design of effective antimicrobial compounds.
PLOS ONE | 2017
Cristina Ortiz; Mercedes Casanova; Pilar Palacios; Miguel Vicente
Assembly of the proto-ring, formed by the essential FtsZ, FtsA and ZipA proteins, and its progression into a divisome, are essential events for Escherichia coli division. ZapC is a cytoplasmic protein that belongs to a group of non-essential components that assist FtsZ during proto-ring assembly. Any overproduction of these proteins leads to faulty FtsZ-rings, resulting in a cell division block. We show that ZapC overproduction can be counteracted by an excess of the ZipA-independent hypermorph FtsA* mutant, but not by similar amounts of wild type FtsA+. An excess of FtsA+ allowed regular spacing of the ZapC-blocked FtsZ-rings, but failed to promote recruitment of the late-assembling proteins FtsQ, FtsK and FtsN and therefore, to activate constriction. In contrast, overproduction of FtsA*, besides allowing correct FtsZ-ring localization at midcell, restored the ability of FtsQ, FtsK and FtsN to be incorporated into active divisomes.
Archive | 1993
J. Pla; Pilar Palacios; Manuel Calderon De La Barca Sanchez; Teresa Garrido; Miguel Vicente
Most of the information concerning cell division in Escherichia coli derive from genetic observations. Mutations in E. coli genes causing inhibition of cell division and a filamentous phenotype have been isolated (Bachmann, 1990). In this way, several genes have been identified and among them, ftsQ (Begg et al., 1980), ftsA (Donachie et al., 1979) and ftsZ (Lutkenhaus et al., 1980) seem specially relevant for the initial (ftsQ and ftsZ) and final (ftsA) steps of the process. FtsQ, FtsA and FtsZ have been located associated to different degrees to the cytoplasmic membrane, and have been postulated to form part of the septator, a structure active in cell division (Vicente et al., 1991 b).