Poulomi Acharya
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Poulomi Acharya.
Journal of Biological Chemistry | 2009
YongQiang Wang; Mingxiang Liao; Nicholas Hoe; Poulomi Acharya; Changhui Deng; Andrew N. Krutchinsky; Maria Almira Correia
Cytochromes P450 (P450s) incur phosphorylation. Although the precise role of this post-translational modification is unclear, marking P450s for degradation is plausible. Indeed, we have found that after structural inactivation, CYP3A4, the major human liver P450, and its rat orthologs are phosphorylated during their ubiquitin-dependent proteasomal degradation. Peptide mapping coupled with mass spectrometric analyses of CYP3A4 phosphorylated in vitro by protein kinase C (PKC) previously identified two target sites, Thr264 and Ser420. We now document that liver cytosolic kinases additionally target Ser478 as a major site. To determine whether such phosphorylation is relevant to in vivo CYP3A4 degradation, wild type and CYP3A4 with single, double, or triple Ala mutations of these residues were heterologously expressed in Saccharomyces cerevisiae pep4Δ strains. We found that relative to CYP3A4wt, its S478A mutant was significantly stabilized in these yeast, and this was greatly to markedly enhanced for its S478A/T264A, S478A/S420A, and S478A/T264A/S420A double and triple mutants. Similar relative S478A/T264A/S420A mutant stabilization was also observed in HEK293T cells. To determine whether phosphorylation enhances CYP3A4 degradation by enhancing its ubiquitination, CYP3A4 ubiquitination was examined in an in vitro UBC7/gp78-reconstituted system with and without cAMP-dependent protein kinase A and PKC, two liver cytosolic kinases involved in CYP3A4 phosphorylation. cAMP-dependent protein kinase A/PKC-mediated phosphorylation of CYP3A4wt but not its S478A/T264A/S420A mutant enhanced its ubiquitination in this system. Together, these findings indicate that phosphorylation of CYP3A4 Ser478, Thr264, and Ser420 residues by cytosolic kinases is important both for its ubiquitination and proteasomal degradation and suggest a direct link between P450 phosphorylation, ubiquitination, and degradation.
Journal of Biological Chemistry | 2011
YongQiang Wang; Shenheng Guan; Poulomi Acharya; Dennis R. Koop; Yi Liu; Mingxiang Liao; Alma L. Burlingame; Maria Almira Correia
Human liver CYP2E1 is a monotopic, endoplasmic reticulum-anchored cytochrome P450 responsible for the biotransformation of clinically relevant drugs, low molecular weight xenobiotics, carcinogens, and endogenous ketones. CYP2E1 substrate complexation converts it into a stable slow-turnover species degraded largely via autophagic lysosomal degradation. Substrate decomplexation/withdrawal results in a fast turnover CYP2E1 species, putatively generated through its futile oxidative cycling, that incurs endoplasmic reticulum-associated ubiquitin-dependent proteasomal degradation (UPD). CYP2E1 thus exhibits biphasic turnover in the mammalian liver. We now show upon heterologous expression of human CYP2E1 in Saccharomyces cerevisiae that its autophagic lysosomal degradation and UPD pathways are evolutionarily conserved, even though its potential for futile catalytic cycling is low due to its sluggish catalytic activity in yeast. This suggested that other factors (i.e. post-translational modifications or “degrons”) contribute to its UPD. Indeed, in cultured human hepatocytes, CYP2E1 is detectably ubiquitinated, and this is enhanced on its mechanism-based inactivation. Studies in Ubc7p and Ubc5p genetically deficient yeast strains versus corresponding isogenic wild types identified these ubiquitin-conjugating E2 enzymes as relevant to CYP2E1 UPD. Consistent with this, in vitro functional reconstitution analyses revealed that mammalian UBC7/gp78 and UbcH5a/CHIP E2-E3 ubiquitin ligases were capable of ubiquitinating CYP2E1, a process enhanced by protein kinase (PK) A and/or PKC inclusion. Inhibition of PKA or PKC blocked intracellular CYP2E1 ubiquitination and turnover. Here, through mass spectrometric analyses, we identify some CYP2E1 phosphorylation/ubiquitination sites in spatially associated clusters. We propose that these CYP2E1 phosphorylation clusters may serve to engage each E2-E3 ubiquitination complex in vitro and intracellularly.
Journal of Biological Chemistry | 2010
Sung-Mi Kim; Poulomi Acharya; Juan C. Engel; Maria Almira Correia
CYP3A4 is a dominant human liver cytochrome P450 enzyme engaged in the metabolism and disposition of >50% of clinically relevant drugs and held responsible for many adverse drug-drug interactions. CYP3A4 and its mammalian liver CYP3A orthologs are endoplasmic reticulum (ER)-anchored monotopic proteins that undergo ubiquitin (Ub)-dependent proteasomal degradation (UPD) in an ER-associated degradation (ERAD) process. These integral ER proteins are ubiquitinated in vivo, and in vitro studies have identified the ER-integral gp78 and the cytosolic co-chaperone, CHIP (C terminus of Hsp70-interacting protein), as the relevant E3 Ub-ligases, along with their cognate E2 Ub-conjugating enzymes UBC7 and UbcH5a, respectively. Using lentiviral shRNA templates targeted against each of these Ub-ligases, we now document that both E3s are indeed physiologically involved in CYP3A ERAD/UPD in cultured rat hepatocytes. Accordingly, specific RNAi resulted in ≈80% knockdown of each hepatic Ub-ligase, with a corresponding ≈2.5-fold CYP3A stabilization. Surprisingly, however, such stabilization resulted in increased levels of functionally active CYP3A, thereby challenging the previous notion that E3 recognition and subsequent ERAD of CYP3A proteins required ab initio their structural and/or functional inactivation. Furthermore, coexpression in HepG2 cells of both CYP3A4 and gp78, but not its functionally inactive RING-finger mutant, resulted in enhanced CYP3A4 loss greater than that in corresponding cells expressing only CYP3A4. Stabilization of a functionally active CYP3A after RNAi knockdown of either of the E3s, coupled with the increased CYP3A4 loss on gp78 or CHIP coexpression, suggests that ERAD-associated E3 Ub-ligases can influence clinically relevant drug metabolism by effectively regulating the physiological CYP3A content and consequently its function.
Molecular Pharmacology | 2009
Poulomi Acharya; Juan C. Engel; Maria Almira Correia
Hepatic cytochromes P450 3A (P450s 3A) are endoplasmic reticulum (ER)-proteins, responsible for xenobiotic metabolism. They are degraded by the ubiquitin-dependent 26S proteasome. Consistent with this, we have shown that proteasomal inhibitors N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) and N-benzoyloxycarbonyl-Leu-Leu-Leu-B(OH)2 (MG262) stabilize CYP3A proteins. However, MG132 has been reported to suppress P450s 3A as a result of impaired nuclear factor-κB activation and consequently reduced CYP3A protein stability. Because the MG132 concentration used in those studies was 10-fold higher than that required for CYP3A stabilization, we examined the effect of MG132 (0-300 μM) concentration-dependent proteasomal inhibition on CYP3A turnover in cultured primary rat hepatocytes. We found a biphasic MG132 concentration effect on CYP3A turnover: Stabilization at 5 to 10 μM with marked suppression at >100 μM. Proteasomal inhibitors reportedly induce ER stress, heat shock, and apoptotic response. At these high MG132 concentrations, such CYP3A suppression could be due to ER stress induction, so we monitored the activity of PERK [PKR (RNA-dependent protein kinase)-like ER kinase (EIF2AK3)], the ER stress-activated eukaryotic initiation factor 2α (eIF2α) kinase. Indeed, we found a marked (≈4-fold) MG132 concentration-dependent PERK autophosphorylation, along with an 8-fold increase in eIF2α-phosphorylation. In parallel, MG132 also activated GCN2 [general control nonderepressible-2 (EIF2AK4)] eIF2α kinase in a concentration-dependent manner, but not the heme-regulated inhibitor eIF2α kinase [(EIF2AK1)]. Pulse-chase, immunoprecipitation/immunoblotting analyses documented the consequently dramatic translational shutoff of total hepatic protein, including but not limited to CYP3A and tryptophan 2,3-dioxygenase protein syntheses. These findings reveal that at high concentrations, MG132 is indeed cytotoxic and can suppress CYP3A synthesis, a result confirmed by confocal immunofluorescence analyses of MG132-treated hepatocytes.
Molecular Pharmacology | 2010
Poulomi Acharya; Jane-Jane Chen; Maria Almira Correia
We have reported previously that the hepatic heme-regulated inhibitor (HRI)-eukaryotic initiation factor 2α (eIF2α) kinase is activated in acute heme-deficient states, resulting in translational shut-off of global hepatic protein synthesis, including phenobarbital (PB)-mediated induction of CYP2B enzymes in rats. These findings revealed that heme regulates hepatic CYP2B synthesis at the translational level via HRI. As a proof of concept, we have now employed a genetic HRI-knockout (KO) mouse hepatocyte model. In HRI-KO hepatocytes, PB-mediated CYP2B protein induction is no longer regulated by hepatic heme availability and proceeds undeterred even after acute hepatic heme depletion. It is noteworthy that genetic ablation of HRI led to a small albeit significant elevation of basal hepatic endoplasmic reticulum (ER) stress as revealed by the activation of ER stress-inducible RNA-dependent protein kinase-like ER-integral (PERK) eIF2α-kinase, and induction of hepatic protein ubiquitination and ER chaperones Grp78 and Grp94. Such ER stress was further augmented after PB-mediated hepatic protein induction. These findings suggest that HRI normally modulates the basal hepatic ER stress tone. Furthermore, because HRI exists in both human and rat liver in its heme-sensitive form and is inducible by cytochrome P450 inducers such as PB, these findings are clinically relevant to acute heme-deficient states, such as the acute hepatic porphyrias. Activation of this exquisitely sensitive heme sensor would normally protect cells by safeguarding cellular energy and nutrients during acute heme deficiency. However, similar HRI activation in genetically predisposed persons could lead to global translational arrest of physiologically relevant enzymes and proteins, resulting in the severe and often fatal clinical symptoms of the acute hepatic porphyrias.
Molecular & Cellular Proteomics | 2012
YongQiang Wang; Shenheng Guan; Poulomi Acharya; Yi Liu; Ranjit K. Thirumaran; Relly Brandman; Erin G. Schuetz; Alma L. Burlingame; Maria Almira Correia
CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may serve to engage each E2-E3 complex. Collectively, our findings underscore the interplay between protein phosphorylation and ubiquitination in ERAD and, to our knowledge, provide the very first example of gp78 substrate recognition via protein phosphorylation.
Molecular Pharmacology | 2010
Poulomi Acharya; Jane-Jane Chen; Maria Almira Correia
We have reported previously that the hepatic heme-regulated inhibitor (HRI)-eukaryotic initiation factor 2α (eIF2α) kinase is activated in acute heme-deficient states, resulting in translational shut-off of global hepatic protein synthesis, including phenobarbital (PB)-mediated induction of CYP2B enzymes in rats. These findings revealed that heme regulates hepatic CYP2B synthesis at the translational level via HRI. As a proof of concept, we have now employed a genetic HRI-knockout (KO) mouse hepatocyte model. In HRI-KO hepatocytes, PB-mediated CYP2B protein induction is no longer regulated by hepatic heme availability and proceeds undeterred even after acute hepatic heme depletion. It is noteworthy that genetic ablation of HRI led to a small albeit significant elevation of basal hepatic endoplasmic reticulum (ER) stress as revealed by the activation of ER stress-inducible RNA-dependent protein kinase-like ER-integral (PERK) eIF2α-kinase, and induction of hepatic protein ubiquitination and ER chaperones Grp78 and Grp94. Such ER stress was further augmented after PB-mediated hepatic protein induction. These findings suggest that HRI normally modulates the basal hepatic ER stress tone. Furthermore, because HRI exists in both human and rat liver in its heme-sensitive form and is inducible by cytochrome P450 inducers such as PB, these findings are clinically relevant to acute heme-deficient states, such as the acute hepatic porphyrias. Activation of this exquisitely sensitive heme sensor would normally protect cells by safeguarding cellular energy and nutrients during acute heme deficiency. However, similar HRI activation in genetically predisposed persons could lead to global translational arrest of physiologically relevant enzymes and proteins, resulting in the severe and often fatal clinical symptoms of the acute hepatic porphyrias.
Journal of Biological Chemistry | 2011
Poulomi Acharya; Mingxiang Liao; Juan C. Engel; Maria Almira Correia
The CYP3A subfamily of hepatic cytochromes P450, being engaged in the metabolism and clearance of >50% of clinically relevant drugs, can significantly influence therapeutics and drug-drug interactions. Our characterization of CYP3A degradation has indicated that CYPs 3A incur ubiquitin-dependent proteasomal degradation (UPD) in an endoplasmic reticulum (ER)-associated degradation (ERAD) process. Cytochromes P450 are monotopic hemoproteins N-terminally anchored to the ER membrane with their protein bulk readily accessible to the cytosolic proteasome. Given this topology, it was unclear whether they would require the AAA-ATPase p97 chaperone complex that retrotranslocates/dislocates ubiquitinated ER-integral and luminal proteins into the cytosol for proteasomal delivery. To assess the in vivo relevance of this p97-CYP3A association, we used lentiviral shRNAs to silence p97 (80% mRNA and 90% protein knockdown relative to controls) in sandwich-cultured rat hepatocytes. This extensive hepatic p97 knockdown remarkably had no effect on cellular morphology, ER stress, and/or apoptosis, despite the well recognized strategic p97 roles in multiple important cellular processes. However, such hepatic p97 knockdown almost completely abrogated CYP3A extraction into the cytosol, resulting in a significant accumulation of parent and ubiquitinated CYP3A species that were firmly ER-tethered. Little detectable CYP3A accumulated in the cytosol, even after concomitant inhibition of proteasomal degradation, thereby documenting a major role of p97 in CYP3A extraction and delivery to the 26 S proteasome during its UPD/ERAD. Intriguingly, the accumulated parent CYP3A was functionally active, indicating that p97 can regulate physiological CYP3A content and thus influence its clinically relevant function.
The FASEB Journal | 2011
Poulomi Acharya; Maria Almira Correia
The FASEB Journal | 2010
YongQiang Wang; Shenheng Guan; Poulomi Acharya; Alma L. Burlingame; M. Almira Correia