Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pradip Mitra is active.

Publication


Featured researches published by Pradip Mitra.


Journal of Electronic Materials | 1995

Independently accessed back-to-back HgCdTe photodiodes: a new dual-band infrared detector

M. B. Reine; P. W. Norton; R. Starr; M. H. Weiler; M. Kestigian; B. L. Musicant; Pradip Mitra; T. R. Schimert; F. C. Case; Ishwara B. Bhat; H. Ehsani; V. Rao

We report the first data for a new two-color HgCdTe infrared detector for use in large dual-band infrared focal plane arrays (IRFPAs). Referred to as the independently accessed back-to-back photodiode structure, this novel dual-band HgCdTe detector provides independent electrical access to each of two spatially collocated back-to-back HgCdTe photodiodes so that true simultaneous and independent detection of medium wavelength (MW, 3–5 μm) and long wavelength (LW, 8–12 μm) infrared radiation can be accomplished. This new dual-band detector is directly compatible with standard backside-illuminated bump-interconnected hybrid HgCdTe IRFPA technology. It is capable of high fill factor, and allows high quantum efficiency and BLIP sensitivity to be realized in both the MW and LW photodiodes. We report data that demonstrate experimentally the key features of this new dual-band detector. These arrays have a unit cell size of 100 x 100 μm2, and were fabricated from a four-layer p-n-N-P HgCdTe film grown in situ by metalorganic chemical vapor deposition on a CdZnTe substrate. At 80K, the MW detector cutoff wavelength is 4.5 μm and the LW detector cutoff wavelength is 8.0 μm. Spectral crosstalk is less than 3%. Data confirm that the MW and LW photodiodes are electrically and radiometrically independent.


Proceedings of SPIE | 1998

Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs

M. B. Reine; Allen W. Hairston; P. O'Dette; Stephen P. Tobin; F. T. J. Smith; B. L. Musicant; Pradip Mitra; F. C. Case

We report results for 64 X 64 simultaneous MW/LW dual-band HgCdTe Focal Plane Arrays (FPAs). The MW and LW average cutoff wavelengths at 78 K are in the 4.27 - 4.35 micrometer and 10.1 - 10.5 micrometer ranges respectively. The unit cell size is 75 X 75 micrometer2. These staring dual-band FPAs exhibit high average quantum efficiencies (MW: 79%; LW:67%), high median detectivities (MW: 4.8 X 1011 cm- (root)Hz/W; LW: 7.1 X 1010 cm-(root)Hz/W), low median NE(Delta) Ts (MW: 20 mK; LW: 7.5 mK for TSCENE equals 295 K and f/2.9), large dynamic ranges (MW: 77 dB; LW: 75 dB), and 87% stare efficiencies for both the MW and LW spectral bands. The dual-band HgCdTe detector array is fabricated from a four- layer P-n-N-P film grown in situ by MOVPE. The dual-band silicon CMOS input circuit utilizes a unique floating-direct- injection approach to achieve separate and simultaneous integration of both bands within each unit cell. There are two Compact Signal Averager circuits in each unit cell, to average subframes within every frame for each spectral band, allowing full stare efficiency in both spectral bands, as well as variable band-independent transimpedance gains. These data confirm that all key features of our P-n-N-P dual-band HgCdTe detector and our dual-band input circuit function as designed.


Journal of Electronic Materials | 1995

Metalorganic chemical vapor deposition of HgCdTe p/n junctions using arsenic and iodine doping

Pradip Mitra; T. R. Schimert; F. C. Case; S. L. Barnes; M. B. Reine; R. Starr; M. H. Weiler; M. Kestigian

We report new results on metalorganic chemical vapor deposition (MOCVD)in situ growth of long wavelength infrared (LWIR) P-on-n and medium wavelength infrared (MWIR) n-on-P HgCdTe heterojunction photodiodes using the interdiffused multilayer process (IMP). The n-type regions are doped with iodine using the precursor ethyl iodide (El). I-doped HgCdTe using El has mobilities higher than that obtained on undoped background annealed films and are comparable to LPE grown In-doped HgCdTe. The p-type layers are doped with arsenic from either tertiarybutylarsine (TBAs) or a new precursor,tris-dimethylaminoarsenic (DMAAs). The substrates used in this work are lattice matched CdZnTe oriented (211)B or (100)4°→«110». Junction quality was assessed by fabricating and characterizing backside-illuminated arrays of variable-area circular mesa photodiodes. This paper presents four new results. First, carrier lifetimes measured at 80K on arsenic doped single HgCdTe layers are generally longer for films doped from the new precursor DMAAs than from TBAs. Second, we present data on the first P-on-n HgCdTe photodiodes grownin situ with DMAAs which have R0A products limited by g-r current at 80K for λco = 7–12 μm, comparable to the best R0A products we have achieved with TBAs. Third, we report the first experimental data on a new HgCdTe device architecture, the n-on-P heterojunction, with a wide gap p-type layer which allows radiation incident through the substrate to be absorbed in a narrower gap n-type layer, thereby eliminating interface recombination effects. With the n-on-P architecture, MWIR photodiodes were obtained reproducibly with classical spectral response shapes, high quantum efficiencies (70-75%) and R0A products above 2 x 105 ohm-cm2 for λco = 5.0 μm at 80K. Fourth, we report 40K data for LWIR P-on-n HgCdTe heterojunction photodiodes (using TBAs), with R0A values of 2 x 104 ohm-cm2 for λco = 11.7 μm and 5 x 105 ohm-cm2 for λco- 9.4 μm. These are the highest R0A values reported to date for LWIR P-on-n heterojunctions grownin situ by MOCVD.


Journal of Electronic Materials | 2014

A Highly Sensitive Multi-element HgCdTe e-APD Detector for IPDA Lidar Applications

Jeffrey D. Beck; Terry Welch; Pradip Mitra; Kirk Reiff; Xiaoli Sun; James B. Abshire

An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 μm cutoff HgCdTe 4 × 4 APD detector array with 80 μm pitch pixels and a custom complementary metal–oxide–semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 × 4 detector system was characterized at 77 K with a 1.55 μm wavelength, 1 μs wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with σ/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz1/2 with a σ/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 μs pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz1/2 at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.


Journal of Electronic Materials | 1996

Improved arsenic doping in metalorganic chemical vapor deposition of HgCdTe and in situ growth of high performance long wavelength infrared photodiodes

Pradip Mitra; Y. L. Tyan; F. C. Case; R. Starr; M. B. Reine

Controlled and effective p-type doping is a key ingredient forin situ growth of high performance HgCdTe photodiode detectors. In this paper, we present a detailed study of p-type doping with two arsenic precursors in metalorganic chemical vapor deposition (MOCVD) of HgCdTe. Doping results from a new precursortris-dimethylaminoarsenic (DMAAs), are reported and compared to those obtained from tertiarybutylarsine (TBAs). Excellent doping control has been achieved using both precursors in the concentration range of 3 × 1015-5 × 1017 cm−3 which is sufficient for a wide variety of devices. Arsenic incorporation efficiency for the same growth temperature and partial pressure is found to be higher with DMAAs than with TBAs. For doping levels up to 1 × 1017 cm−3, the alloy composition is not significantly affected by DMAAs. However, at higher doping levels, an increase in the x-value is observed, possibly as a result of surface adduct formation of DMAAs dissociative products with dimethylcadmium. The activation of the arsenic as acceptors is found to be in the 152–50% range for films grown with DMAAs following a stoichiometric anneal. However, a site transfer anneal increases the acceptor activation to near 100%. Detailed temperature dependent Hall measurements and modeling calculations show that two shallow acceptor levels are involved with ionization energies of 11.9 and 3.2 meV. Overall, the data indicate that DMAAs results in more classically behaved acceptor doping. This is most likely because DMAAs has a more favorable surface dissociation chemistry than TBAs. Long wavelength infrared photodiode arrays were fabricated on P-on-n heterojunctions, grownin situ with iodine doping from ethyl iodide and arsenic from DMAAs on near lattice matched CdZnTe (100) substrates. At 77K, for photodiodes with 10.1 and 11.1 (im cutoff wavelengths, the average (for 100 elements 60 × 60 µm2 in size) zero-bias resistance-area product, R0A are 434 and 130 ohm-cm2, respectively. Quantum efficiencies are ≥50% at 77K. These are the highest R0A data reported for MOCVDin situ grown photodiodes and are comparable to state-of-the-art LPE grown photodiodes processed and tested under identical conditions.


Optics Express | 2017

HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths

Xiaoli Sun; James B. Abshire; Jeffrey D. Beck; Pradip Mitra; Kirk Reiff; Guangning Yang

We report results from characterizing the HgCdTe avalanche photodiode (APD) arrays developed for lidar at infrared wavelengths by using the high density vertically integrated photodiodes (HDVIP®) technique. The results show >90% quantum efficiencies between 0.8 μm and the cut-off wavelength, >600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and <0.5 fW/Hz1/2 noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD gain settings. They have been used successfully in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as precursors for use in space lidar.


Infrared Technology and Applications XXXIII | 2007

Gated IR Imaging with 128 × 128 HgCdTe Electron Avalanche Photodiode FPA

Jeffrey D. Beck; Milton Woodall; Richard Scritchfield; Martha Ohlson; Lewis Wood; Pradip Mitra; James E. Robinson

The next generation of IR sensor systems will include active imaging capabilities. One example of such a system is a gated-active/passive system. The gated-active/passive system promises long-range target detection and identification. A detector that is capable of both active and passive modes of operation opens up the possibility of a self-aligned system that uses a single focal plane. The detector would need to be sensitive in the 3-5 μm band for passive mode operation. In the active mode, the detector would need to be sensitive in eye-safe range, e.g. 1.55 μm, and have internal gain to achieve the required system sensitivity. The MWIR HgCdTe electron injection avalanche photodiode (e-APD) not only provides state-of-the-art 3-5 μm spectral sensitivity, but also high avalanche photodiode gain without minimal excess noise. Gains of greater than 1000 have been measured in MWIR e-APDs with a gain independent excess noise factor of 1.3. This paper reports the application of the mid-wave HgCdTe e-APD for near-IR gated-active/passive imaging. Specifically a 128x128 FPA composed of 40 μm pitch, 4.2 μm to 5 μm cutoff, APD detectors with a custom readout integrated circuit was designed, fabricated, and tested. Median gains as high as 946 at 11 V bias with noise equivalent inputs as low as 0.4 photon were measured at 80 K. A gated imaging demonstration system was designed and built using commercially available parts. High resolution gated imagery out to 9 km was obtained with this system that demonstrated predicted MTF, precision gating, and sub 10 photon sensitivity.


Optical Engineering | 2014

Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode

Jeffrey D. Beck; Richard Scritchfield; Pradip Mitra; William W. Sullivan; Anthony D. Gleckler; Robert Strittmatter; Robert J. Martin

Abstract. A linear mode photon counting focal plane array using HgCdTe mid-wave infrared (MWIR) cutoff electron initiated avalanche photodiodes (e-APDs) has been designed, fabricated, and characterized. The broad spectral range (0.4 to 4.3 μm) is unique among photon counters, making this a “first of its kind” system spanning the visible to the MWIR. The low excess noise [F(M)≈1] of the e-APDs allows for robust photon detection while operating at a stable linear avalanche gain in the range of 500–1000. The readout integrated circuit (ROIC) design included a very high gain-bandwidth product resistive transimpedance amplifier (3×1013  Ω-Hz) and a 4 ns output digital pulse width comparator. The ROIC had 16 high-bandwidth analogs and 16 low-voltage differential signaling digital outputs. The 2×8 array was integrated into an LN2 Dewar with a custom leadless chip carrier and daughter board design that preserved high-bandwidth analog and digital signal integrity. The 2×8 e-APD arrays were fabricated on 4.3 μm cutoff HgCdTe and operated at 84 K. The measured dark currents were approximately 1 pA at 13 V bias where the measured avalanche photodiode gain was 500. This translates to a predicted dark current induced dark count rate of less than 20 KHz. Single photon detection was achieved with a photon pulse signal-to-noise ratio of 13.7 above the amplifier noise floor. A photon detection efficiency of 50% was measured at a photon background limited false event rate of about 1 MHz. The measured jitter was in the range of 550–800 ps. The demonstrated minimum time between distinguishable events was less than 10 ns.


Proceedings of SPIE | 2006

SWIR hyperspectral detection with integrated HgCdTe detector and tunable MEMS filter

Pradip Mitra; J.D. Beck; M.R. Skokan; James E. Robinson; J. Antoszewski; K.J. Winchester; Adrian Keating; T. Nguyen; K.K.M.B.D. Silva; C.A. Musca; John Dell; L. Faraone

Hyperspectral imaging in the infrared bands is traditionally performed using a broad spectral response focal plane array, integrated in a grating or a Fourier transform spectrometer. This paper describes an approach for miniaturizing a hyperspectral detection system on a chip by integrating a Micro-Electro-Mechanical-System (MEMS) based tunable Fabry Perot (FP) filter directly on a photodetector. A readout integrated circuit (ROIC) serves to both integrate the detector signal as well as to electrically tune the filter across the wavelength band. We report the first such demonstration of a tunable MEMS filter monolithically integrated on a HgCdTe detector. The filter structures, designed for operation in the 1.6-2.5 μm wavelength band, were fabricated directly on HgCdTe detectors, both in photoconducting and high density vertically integrated photodiode (HDVIP) detectors. The HDVIP detectors have an architecture that permits operation in the standard photodiode mode at low bias voltages (≤0.5V) or in the electron avalanche photodiode (EAPD) mode with gain at bias voltages of ~20V. In the APD mode gain values of 100 may be achieved at 20 V at 200 K. The FP filter consists of distributed Bragg mirrors formed of Ge-SiO-Ge, a sacrificial spacer layer within the cavity and a silicon nitride spacer membrane for support. Mirror stacks fabricated on silicon, identical to the structures that will form the optical cavity, have been characterized to determine the optimum filter characteristics. The measured full width at half maximum (FWHM) was 34 nm at the center wavelength of 1780 nm with an extinction ratio of 36.6. Fully integrated filters on HgCdTe photoconductors with a center wavelength of approximately 1950 nm give a FWHM of approximately 100 nm, and a peak responsivity of approximately 8 × 104 V/W. Initial results for the filters on HDVIP detectors exhibit FWHM of 140 nm.


Proceedings of SPIE | 2013

A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications

Jeffrey D. Beck; Terry Welch; Pradip Mitra; Kirk Reiff; Xiaoli Sun; James B. Abshire

A 16 element HgCdTe e-APD detector has been developed for lidar receivers that has significant improvements in sensitivity in the spectral range from < 1μm to 4 μm. A demonstration detector consisting of a 4x4 APD detector array, with 80 μm square elements, a custom CMOS readout integrated circuit (ROIC), a closed cycle cooler-Dewar, and support electronics has been designed, fabricated, and tested. The custom ROIC design provides > 6 MHz bandwidth with low noise and 21 selectable gains. Ninety-six arrays were fabricated with 69% of the arrays meeting the dark current spec in the center 4 pixels at 10 V bias where the APD gain was expected to be around 150. Measurements to 12 V on one array showed APD gains of 654 with a gain normalized dark currents of 1.2 fA to 3.2 fA. The lowest dark current array showed a maximum dark current of 6.2 pA at 10 V and 77 K. The 4.4 μm cutoff detector was characterized at an operating temperature of 77K with a 1.55 μm, 1μs wide, laser pulse. The photon conversion efficiency at unity gain was 91%. The mean measured APD gain at 77 K was 308 at 11V, the responsivity was 782 μV/pW, the average NEP was 1.04 fW/Hz1/2. The bandwidth was 6.8 MHz, and the broadband NEP was 2.97 pW. This detector offers a wide spectral response, dynamic range, and substantially improved sensitivity and lifetime for integrated path differential absorption (IPDA) lidar measurements of atmospheric trace gases such as CO2 and CH4.

Collaboration


Dive into the Pradip Mitra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Abshire

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Sun

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Keating

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

C.A. Musca

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

K.J. Winchester

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge