Prasenjit Pandey
Indian Association for the Cultivation of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prasenjit Pandey.
Journal of Physical Chemistry A | 2009
Anamika Mukhopadhyay; Moitrayee Mukherjee; Prasenjit Pandey; Amit K. Samanta; Biman Bandyopadhyay; Tapas Chakraborty
Blue-shifting C-H...O hydrogen bonded complexes between chloroform and three small cyclic ketones (cyclohexanone, cyclopentanone, and cyclobutanone) have been identified by use of FTIR spectroscopy in CCl(4) solution at room temperature. The shifts of the C-H stretching fundamental of chloroform (nu(C-H)) in the said three complexes are +1, +2, and +5 cm(-1), respectively, and the complexation results in enhancement of the nu(C-H) transition intensity in all three cases. The 1:1 stoichiometry of the complexes is suggested by identifying distinct isosbestic points between the carbonyl stretching (nu(C=O)) fundamentals of the monomers and corresponding complexes for spectra measured with different chloroform to ketone concentrations. The nu(C=O) bands in the three complexes are red-shifted by 8, 19, and 6 cm(-1), and apparently have no correlation with the respective blue shifts of the nu(C-H) bands. Spectral analysis reveals that the complex with cyclohexanone is most stable, and the stability decreases with the ring size of the cyclic ketones. A qualitative explanation of the relative stabilities of the complexes is presented by correlating the hydrogen bond acceptor abilities of the carbonyl groups with the ring size of the cyclic ketones. Quantum mechanical calculations at the DFT/B3LYP/6-311++G(d,p) and MP2/6-31+G(d) levels were performed for predictions of the shapes of the complexes, electronic structure parameters of C-H (donor) and C=O (acceptor) groups, intermolecular interaction energies, spectral shifts, and evolution of those properties when the hydrogen bond distance between the donor-acceptor moieties is scanned. The results show that the binding energies of the complexes are correlated with the dipole moments, proton affinity, and n(O) --> sigma*(C-H) hyperconjugative charge transfer abilities of the three ketones. NBO analysis reveals that the blue shifting of the nu(C-H) transition in a complex is the net effect of hyperconjugation and repolarization/rehybridization of the bond under the influence of the electric field of carbonyl oxygen.
Journal of Physical Chemistry A | 2010
Amit K. Samanta; Prasenjit Pandey; Biman Bandyopadhyay; Tapas Chakraborty
Matrix-isolation infrared spectra of 1,2-cyclohexanedione (CD) and 3-methyl-1,2-cyclohexanedione (3-MeCD) were measured in a nitrogen matrix at 8 K. The spectral features reveal that, in the matrix environment, both molecules exist exclusively in the monohydroxy tautomeric form, which is stabilized by an intramolecular O-H...O=C hydrogen bond (HB). The nu(O-H) band of the enol tautomer of 3-MeCD appears at a relatively lower frequency and displays a somewhat broader bandwidth compared to that of CD, and these spectral differences between the two molecules are interpreted as being due to the formation of an interconnected C-H...O HB, where the enolic oxygen is the HB acceptor and one of the C-H covalent bonds of the methyl group is the HB donor. Electronic structure calculations at the B3LYP/6-311++G**, MP2/6-311++G**, and MP2/cc-pVTZ levels predict that this tautomer (enol-2) is approximately 3.5 kcal/mol more stable than a second enolic form (enol-1) where such interconnected H-bonding is absent. Theoretical analysis with a series of molecules having similar functional groups reveals that part of the excess stability (approximately 1 kcal/mol) of enol-2 originates from a cooperative interaction between the interconnected C-H...O and O-H...O HBs. In the IR spectrum, a weak band at 3007 cm(-1) is assigned to nu(C-H) of the methyl C-H bond involved in the H-bonded network. The spectra predicted by both harmonic and anharmonic calculations reveal that this transition is largely blue-shifted compared to the fundamentals of the other two methyl C-H stretching frequencies that are not involved in H-bonding. The conclusions are corroborated further by natural bond orbital (NBO) analysis.
Journal of Physical Chemistry A | 2012
Biman Bandyopadhyay; Prasenjit Pandey; Pujarini Banerjee; Amit K. Samanta; Tapas Chakraborty
Molecular association and keto-enol tautomerization of β-cyclohexanedione (β-CHD) have been investigated in argon matrix and also in a thin solid film prepared by depositing pure β-CHD vapor on a cold (8 K) KBr window. Infrared spectra reveal that, in low-pressure vapor and argon matrix, the molecules are exclusively in diketo tautomeric form. The CH···O hydrogen bonded dimers of the diketo tautomer are produced by annealing the matrix at 28 K. No indication is found for keto-enol tautomerization of β-CHD in dimeric complexes in argon matrix within the temperature range of 8-28 K. On the other hand, in thin film of pure diketo tautomer, the conversion initiates only when the film is heated at temperatures above 165 K. The observed threshold appears to be associated with excitation of the intermolecular modes, and the IR spectra recorded at high temperatures display narrowing of vibrational bandwidths, which has been associated with reorientations of the molecules in the film. The nonoccurrence of tautomerization of the matrix isolated dimer is consistent with the barrier predicted by electronic structure calculations at B3LYP/6-311++G** and MP2/6-311++G** levels of theory. The transition state calculation predicts that CH···O interaction has a dramatic effect on lowering of the tautomerization barrier, from more than 60 kcal/mol for the bare molecule to ~35-45 kcal/mol for dimers.
Journal of Physical Chemistry A | 2017
Amit K. Samanta; Pujarini Banerjee; Biman Bandyopadhyay; Prasenjit Pandey; Tapas Chakraborty
Matrix isolation infrared spectra of a weak C-H···O hydrogen-bonded complex between the keto-enol form of 1,2-cyclohexanedione (HCHD) and chloroform have been measured. The spectra reveal that the intramolecular O-H···O H-bond of HCHD is weakened as a result of complex formation, manifesting in prominent blue shift (∼23 cm-1) of the νO-H band and red shifts (∼7 cm-1) of νC═O bands of the acceptor (HCHD). The νC-H band of donor CHCl3 undergoes a large red shift of ∼33 cm-1. Very similar spectral effects are also observed for formation of the complex in CCl4 solution at room temperature. Our analysis reveals that out of several possible iso-energetic conformational forms of the complex, the one involving antagonistic interplay between the two hydrogen bonds (intermolecular C-H···O and intramolecular O-H···O) is preferred. The combined experimental and calculated data presented here suggest that in condensed media, conformational preferences are guided by directional hyperconjugative charge transfer interactions at the C-H···O hydrogen bonding site of the complex.
Journal of Physical Chemistry A | 2012
Prasenjit Pandey; Tapas Chakraborty
We report here the vibrational analysis of the infrared spectrum of doubly hydrogen bonded dimer of δ-valerolactam measured in CCl4 solution at room temperature (22 °C). The compound shows an equilibrium of population distributed over the monomer and doubly hydrogen bonded dimer, which is manifested by the isosbestic point in the normalized spectra for solutions of different concentrations. Dimerization induced changes in transition frequencies and intensities have been measured and compared with the computed results. Our results suggest doubling of the intensity of the amide-I (predominantly νC═O) band by double hydrogen bonding at the amide (-C(O)-N(H)-) interface. The amide-A (νN-H) spectral region appears broad and is featured with quite a few numbers of substructures. These substructures are theoretically reproduced by incorporating electrical anharmonicity to the vibrational states. Computational results at the MP2/6-311++G(d,p) level of theory are seen to nicely agree with the measured spectral data.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2018
Pujarini Banerjee; Prasenjit Pandey; Biman Bandyopadhyay
Camphor is known to be held in the substrate pocket of cytochrome P450cam enzyme via H-bond with a tyrosine residue of the enzyme in a unique orientation. This structural exclusivity results in regio- and stereo-specific hydroxylation of camphor by the enzyme. We have carried out a combined IR spectroscopic and quantum chemical investigation to shed light on the factors influencing the conformational exclusivity of 1R-(+)-camphor in the substrate pocket of Cytochrome P450cam, and to determine whether the selectivity is an inherent property of the substrate itself, or is imposed by the enzyme. For this purpose, complexes of camphor have been studied with three H-bond donors namely phenol, methanol and chloroform. Each of the three donors was found to form stable complexes with two distinct conformers; the one mimicking the conformation in enzyme substrate pocket was found to be more stable of the two, for all three donors. Experimentally, both conformers of the H-bonded complexes were identified separately for phenol and methanol in an argon matrix at 8 K, but not for chloroform due to very small energy barrier for interconversion of the two conformers. In room temperature solution phase spectra of camphor with all three donors, the differences in spectral attributes between the two isomeric H-bonded complexes were lost due to thermal motions.
Molecular Physics | 2013
Prasenjit Pandey; Tanmoy Chakraborty; Asok K. Mukherjee
Ab initio theory at the HF/6-311G(d,p) level has been used to compute the hydrogen bonding thermodynamics in bulk liquid ethanol. Inter-cluster hydrogen bonding is assumed to mimic the H-bonding in bulk ethanol. Rotation of the clusters has been neglected, but translational and vibrational motions are taken into account for calculating bulk thermodynamic parameters. Results are well in agreement with an earlier report [J. Chem. Phys. 116, 4212 (2002)]. For a more accurate dipole moment of monomer, MP2/6-311++G(d,p) calculation was done. Use of the computed thermodynamic data in a statistical model yields the Kirkwood-Frohlich correlation factor and the dielectric constant of ethanol (21.0) close to the experimental value, 24.3 at 298 K.
Journal of Physical Chemistry A | 2010
Anamika Mukhopadhyay; Prasenjit Pandey; Tapas Chakraborty
Journal of Molecular Structure | 2010
Amit K. Samanta; Prasenjit Pandey; Biman Bandyopadhyay; Tapas Chakraborty
Journal of Molecular Structure | 2010
Prasenjit Pandey; Amit K. Samanta; Biman Bandyopadhyay; Tapas Chakraborty