Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Preeti Raghavan is active.

Publication


Featured researches published by Preeti Raghavan.


Journal of Neurophysiology | 2010

Compensatory Motor Control After Stroke: An Alternative Joint Strategy for Object-Dependent Shaping of Hand Posture

Preeti Raghavan; Marco Santello; Andrew M. Gordon; John W. Krakauer

Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed reduced finger abduction, proximal interphalangeal joint (PIP) flexion, and metacarpophalangeal joint (MCP) extension at object grasp across all three shapes compared with controls; however, they were able to partially differentiate hand posture for the convex and concave shapes using a compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls. Interestingly, shape-specific hand postures did not unfold initially during reach acceleration as seen in controls, but instead evolved later during reach deceleration, which suggests increased reliance on sensory feedback. These results indicate that kinematic analysis can identify and quantify within-limb compensatory motor control strategies after stroke. From a clinical perspective, quantitative study of compensation is important to better understand the process of recovery from brain injury. From a motor control perspective, compensation can be considered a model for how joint redundancy is exploited to accomplish the task goal through redistribution of work across effectors.


F1000Research | 2015

Viscoelastic Properties of Hyaluronan in Physiological Conditions

Mary K. Cowman; Tannin A. Schmidt; Preeti Raghavan; Antonio Stecco

Hyaluronan (HA) is a high molecular weight glycosaminoglycan of the extracellular matrix (ECM), which is particularly abundant in soft connective tissues. Solutions of HA can be highly viscous with non-Newtonian flow properties. These properties affect the movement of HA-containing fluid layers within and underlying the deep fascia. Changes in the concentration, molecular weight, or even covalent modification of HA in inflammatory conditions, as well as changes in binding interactions with other macromolecules, can have dramatic effects on the sliding movement of fascia. The high molecular weight and the semi-flexible chain of HA are key factors leading to the high viscosity of dilute solutions, and real HA solutions show additional nonideality and greatly increased viscosity due to mutual macromolecular crowding. The shear rate dependence of the viscosity, and the viscoelasticity of HA solutions, depend on the relaxation time of the molecule, which in turn depends on the HA concentration and molecular weight. Temperature can also have an effect on these properties. High viscosity can additionally affect the lubricating function of HA solutions. Immobility can increase the concentration of HA, increase the viscosity, and reduce lubrication and gliding of the layers of connective tissue and muscle. Over time, these changes can alter both muscle structure and function. Inflammation can further increase the viscosity of HA-containing fluids if the HA is modified via covalent attachment of heavy chains derived from Inter-α-Inhibitor. Hyaluronidase hydrolyzes HA, thus reducing its molecular weight, lowering the viscosity of the extracellular matrix fluid and making outflow easier. It can also disrupt any aggregates or gel-like structures that result from HA being modified. Hyaluronidase is used medically primarily as a dispersion agent, but may also be useful in conditions where altered viscosity of the fascia is desired, such as in the treatment of muscle stiffness.


Physical Medicine and Rehabilitation Clinics of North America | 2015

Upper Limb Motor Impairment After Stroke

Preeti Raghavan

Understanding poststroke upper limb impairment is essential to planning therapeutic efforts to restore function. However, determining which upper limb impairment to treat and how is complex because the impairments are not static and multiple impairments may be present simultaneously. How impairments contribute to upper limb dysfunction may be understood by examining them from the perspective of their functional consequences. There are 3 main functional consequences of impairments on upper limb function: (1) learned nonuse, (2) learned bad use, and (3) forgetting as determined by behavioral analysis of tasks. The impairments that contribute to each of these functional limitations are described.


BioMed Research International | 2015

The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke

Yurong Mao; Wai Leung Lo; Qiang Lin; Le Li; Xiang Xiao; Preeti Raghavan; Dongfeng Huang

Objective. Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Setting. Inpatient department of rehabilitation medicine at a university-affiliated hospital. Participants. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Interventions. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Main Outcome Measures. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Results. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. Conclusion. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function.


Music and Medicine | 2010

The Role of Music and Music Therapy in Aphasia Rehabilitation

Meghan L. Hartley; Alan Turry; Preeti Raghavan

A stroke results in brain damage, often causing loss or reduction in speech and language capacity. Music and music therapy can contribute to the recovery of speech and provide emotional support to individuals with aphasia. There is a diverse body of research on the links between music and language. Musical structure is related to language syntax. Singing songs from one’s culture, the emotional act of singing, the theatrics of singing, and musical improvisation can all influence speech output. The purpose of this article is to review current research on the links between language and music in brain function in order tofurther explore, through case study and analysis of music therapy application, how music might be employed as part of acomprehensive, multimodal approach to speech and language rehabilitation.


EBioMedicine | 2016

Human Recombinant Hyaluronidase Injections For Upper Limb Muscle Stiffness in Individuals With Cerebral Injury: A Case Series

Preeti Raghavan; Ying Lu; Mona Mirchandani; Antonio Stecco

Abstract Spasticity, muscle stiffness and contracture cause severe disability after central nervous system injury. However, current treatment options for spasticity produce muscle weakness which can impede movement, and do not directly address muscle stiffness. Here we propose that the accumulation of hyaluronan within muscles promotes the development of muscle stiffness, and report that treatment with the enzyme hyaluronidase increases upper limb movement and reduces muscle stiffness without producing weakness. 20 patients with unilateral upper limb spasticity received multiple intramuscular injections of human recombinant hyaluronidase with saline at a single visit. The safety and efficacy of the injections, passive and active movement, and muscle stiffness at eight upper limb joints were assessed at four time points: pre-injection (T0), within 2weeks (T1), within 4–6weeks (T2), and within 3–5months post-injection (T3). There were no clinically significant adverse effects from the injections. Passive movement at all joints, and active movement at most joints increased at T1, and persisted at T2 and T3 for most joints. The modified Ashworth scores also declined significantly over time post-injection. Hyaluronidase injections offer a safe and potentially efficacious treatment for muscle stiffness in neurologically impaired individuals. These results warrant confirmation in placebo-controlled clinical trials.


Frontiers in Neurology | 2014

Effect of auditory constraints on motor performance depends on stage of recovery post-stroke

Viswanath Aluru; Ying Lu; Alan Leung; Joe Verghese; Preeti Raghavan

In order to develop evidence-based rehabilitation protocols post-stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post-stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in 20 subjects with chronic hemiparesis. We used a bimanual wrist extension task, performed with a custom-made wrist trainer, to facilitate learning of wrist extension in the paretic hand under four auditory conditions: (1) without auditory cueing; (2) to non-musical happy sounds; (3) to self-selected music; and (4) to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each) were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics, and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups, which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post-stroke.


Current Physical Medicine and Rehabilitation Reports | 2014

Peripheral Mechanisms Contributing to Spasticity and Implications for Treatment

Antonio Stecco; Carla Stecco; Preeti Raghavan

Histolopathological studies have demonstrated a generalized increase in extracellular connective tissue in spastic muscles. It is known that increased connective tissue in an immobilized and contracted muscle reduces its compliance and could reduce the threshold for stimulation of spindle receptors in the muscle. Various authors have investigated how increased stretch-induced stimulation of spindles in muscles with stiffer connective tissue can contribute to spasticity. In this review, we compile evidence for the idea that the primary injury to the central nervous system that leads to muscle paresis also triggers changes in the viscosity of the extracellular matrix due to abnormal turnover of hyaluronic acid. Hyaluronic acid is a complex molecule that exhibits non-Newtonian behavior at higher concentrations, leading to altered connective tissue viscosity, which begins a vicious circle that exacerbates spasticity through reduced tissue compliance and potentiation of reflex mechanisms and fibrosis, and contributes to abnormal limb posturing, pain symptoms, and decreases in activities of daily living. The rationale for emerging treatments to break this vicious circle are discussed.


Physiological Reports | 2015

Motor planning poststroke: impairment in vector‐coded reach plans

John-Ross Rizzo; Todd E. Hudson; Andrew Abdou; Ira G. Rashbaum; Ajax E. George; Preeti Raghavan; Michael S. Landy

Healthy individuals appear to use both vector‐coded reach plans that encode movements in terms of their desired direction and extent, and target‐coded reach plans that encode the desired endpoint position of the effector. We examined whether these vector and target reach‐planning codes are differentially affected after stroke. Participants with stroke and healthy controls made blocks of reaches that were grouped by target location (providing target‐specific practice) and by movement vector (providing vector‐specific practice). Reach accuracy was impaired in the more affected arm after stroke, but not distinguishable for target‐ versus vector‐grouped reaches. Reach velocity and acceleration were not only impaired in both the less and more affected arms poststroke, but also not distinguishable for target‐ versus vector‐grouped reaches. As previously reported in controls, target‐grouped reaches yielded isotropic (circular) error distributions and vector‐grouped reaches yielded error distributions elongated in the direction of the reach. In stroke, the pattern of variability was similar. However, the more affected arm showed less elongated error ellipses for vector‐grouped reaches compared to the less affected arm, particularly in individuals with right‐hemispheric stroke. The results suggest greater impairment to the vector‐coded movement‐planning system after stroke, and have implications for the development of personalized approaches to poststroke rehabilitation: Motor learning may be enhanced by practice that uses the preserved code or, conversely, by retraining the more impaired code to restore function.


Frontiers in Human Neuroscience | 2016

Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation

Preeti Raghavan; Daniel Geller; Nina Guerrero; Viswanath Aluru; Joseph P. Eimicke; Jeanne A. Teresi; Gbenga Ogedegbe; Anna Palumbo; Alan Turry

Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement and has positive effects on interpersonal relationships. In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with 1-year follow up. Thirteen subjects completed the 45-min intervention twice a week for 6 weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale (FMS). Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin Scale, MRS), well-being (WHO well-being index), and participation (Stroke Impact Scale, SIS). Repeated measures analysis of variance (ANOVA) was used to test for differences between pre- and post-intervention, and 1-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to 1-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more spontaneous movement, and enhanced emotional engagement. The results suggest that the MULT-I intervention may help stroke survivors re-create their sense of self by integrating sensorimotor, emotional and interoceptive information and facilitate long-term recovery across multiple domains of disability, even in the chronic stage post-stroke. Randomized controlled trials are warranted to confirm the efficacy of this approach. Clinical Trial Registration: National Institutes of Health, clinicaltrials.gov, NCT01586221.

Collaboration


Dive into the Preeti Raghavan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge