Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prodip Bose is active.

Publication


Featured researches published by Prodip Bose.


Journal of Neurotrauma | 2002

Velocity-Dependent Ankle Torque in Rats after Contusion Injury of the Midthoracic Spinal Cord: Time Course

Prodip Bose; Ronald Parmer; Floyd J. Thompson

Progressive neurophysiological changes in the excitability of the pathways that subserved ankle extensor stretch reflexes were observed following midthoracic contusion. The purpose of the present study was to determine the nature and time course of velocity-dependent changes in the excitability of the ankle stretch reflex following T(8) contusion injury. These studies were conducted in adult Sprague-Dawley rats using a 10-g 2.5-cm weight drop onto the exposed thoracic spinal cord (using an NYU injury device and a MASCIS protocol). Velocity-dependent ankle torques and triceps surae EMGs were measured in awake animals over a broad range of rotation velocities (49-612 deg/sec) using instrumentation and protocol previously reported. EMGs and ankle torques were measured before and at weekly intervals following injury. Statistical tests of the data included within group repeated measures ANOVA and between group one-way ANOVA comparisons with time-matched control animals. An alternating pattern of significant increase followed by significant decrease in velocity-dependent ankle torque was observed during the first postinjury month. An increase of 33% in the peak torque and 24% in peak EMG magnitude at 612 deg/sec was observed in the first week. EMG burst amplitudes, that were timed-locked to the dynamic phase of the rotation, were observed to increase and decrease in a manner, which indicated that the changes in torque included stretch-evoked active contractions of the ankle extensors. During the second and third postinjury months, consistent 24-40% increases in the peak torques and 17-107% increases in the EMG magnitudes at the highest velocity were observed. No significant increases in torques were observed in the slowest rotation velocity in these periods.


Experimental Neurology | 2005

Morphological changes of the soleus motoneuron pool in chronic midthoracic contused rats

Prodip Bose; Ronald Parmer; Paul J. Reier; Floyd J. Thompson

This study investigated the morphological features of the soleus motoneuron pool in rats with chronic (4 months), midthoracic (T8) contusions of moderate severity. Motoneurons were retrogradely labeled using unconjugated cholera toxin B (CTB) subunit solution injected directly into the soleus muscle of 10 contused and 6 age- and sex-matched, normal controls. Morphometric studies compared somal area, perimeter, diameter, dendritic length, and size distribution of labeled cells in normal and postcontusion animals. In normal animals, motoneurons with a mean of 110.4 +/- 5.2 were labeled on the toxin-injected side of the cord (left). By comparison, labeled cells with a mean of 93.0 +/- 8.4 (a 16% decrease, P = 0.006) were observed in the chronic spinal-injured animals. A significantly smaller frequency of very small (area, approximately 100 microm2) and medium (area, 545-914 microm2) neurons, and a significantly higher frequency of larger (area, >914 microm2) neurons was observed in the labeled soleus motoneuron pools of injured animals compared with the normal controls. Dendritic bundles in the contused animals were composed of thicker dendrites, were arranged in more closely aggregated bundles, and were organized in a longitudinal axis (rostrocaudal axis). Changes in soleus motoneuron dendritic morphology also included significant decrease of total number of dendrites, increased staining, hypertrophy of primary dendrites, and significant decreased primary, secondary, and tertiary branching. The changes in size distribution and dendritic morphology in the postcontusion animals possibly resulted from cell loss and transformation of medium cells to larger cells and/or injury-associated failure of medium cells to transport the immunolabel.


Journal of Child Neurology | 2001

Scientific Basis of Spasticity: Insights from a Laboratory Model

Floyd J. Thompson; Ron Parmer; Paul J. Reier; David C. Wang; Prodip Bose

A variety of central nervous system injuries, diseases, and developmental deficits can lead to motor disorders that present complex mixtures of symptoms. Those that have a fundamental similarity characterized by the appearance of exaggerated velocity-dependent resistance to the lengthening of skeletal muscles are called spasticity. Reports based on clinical observations of motor disorders have and continue to provide the essential database of information regarding the range and distribution of unifying and discordant features of spasticity. Laboratory investigations employing animal models of motor disorders following experimental lesions of the central nervous system have reproduced some of the neurophysiologic changes that accompany injury of the central nervous system in humans. Those experimental lesions produced by spinal cord contusion/compression reproduce many of the histopathologic features displayed in traumatic injury of the human spinal cord as well. Studies using this model have revealed not only changes in reflex threshold and amplitude but also alterations in fundamental rate-modulation processes that regulate reflex excitability during repetitive stimulation. This report characterizes insights obtained from a laboratory investigation in search of fundamental mechanisms that contribute to the development of spasticity and provides a vantage point for understanding therapeutic strategies for treatment of spasticity. (J Child Neurol 2001;16:2-9).


Spinal Cord | 2008

A longitudinal study of skeletal muscle following spinal cord injury and locomotor training

Min Liu; Prodip Bose; Glenn A. Walter; Floyd J. Thompson; Krista Vandenborne

Study design:Experimental rat model of spinal cord contusion injury (contusion SCI).Objective:The objectives of this study were (1) to characterize the longitudinal changes in rat lower hindlimb muscle morphology following contusion SCI by using magnetic resonance imaging and (2) to determine the therapeutic potential of two types of locomotor training, treadmill and cycling.Setting:University research setting.Methods:After moderate midthoracic contusion SCI, Sprague–Dawley rats were assigned to either treadmill training, cycle training or an untrained group. Lower hindlimb muscle size was examined prior to SCI and at 1-, 2-, 4-, 8-, and 12-week post injury.Results:Following contusion SCI, we observed significant atrophy in all rat hindlimb muscles with the posterior muscles (triceps surae and flexor digitorum) showing greater atrophy than the anterior muscles (tibialis anterior and extensor digitorum). The greatest amount of atrophy was measured at 2-week post injury (range from 11 to 26%), and spontaneous recovery in muscle size was observed by 4 weeks post-SCI. Both cycling and treadmill training halted the atrophic process and accelerated the rate of recovery. The therapeutic influence of both training interventions was observed within 1 week of training and no significant difference was noted between the two interventions, except in the tibialis anterior muscle. Finally, a positive correlation was found between locomotor functional scores and hindlimb muscle size following SCI.Conclusions:Both treadmill and cycle training diminish the extent of atrophy and facilitate muscle plasticity after contusion SCI.


Journal of Bone and Mineral Research | 2015

SCLEROSTIN INHIBITION PREVENTS SPINAL CORD INJURY INDUCED CANCELLOUS BONE LOSS

Luke A. Beggs; Fan Ye; Payal Ghosh; Darren T. Beck; Christine F. Conover; Alexander Balaez; Julie R. Miller; Ean G. Phillips; Nigel Zheng; Alyssa A. Williams; JIgnacio Aguirre; Thomas J. Wronski; Prodip Bose; Stephen E. Borst; Joshua F. Yarrow

Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte‐derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl‐Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl‐Ab to that of testosterone‐enanthate (TE), an agent that we have previously shown prevents SCI‐induced bone loss. Fifty‐five (n = 11–19/group) skeletally mature male Sprague‐Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate‐severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl‐Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty‐one days post‐injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via μCT and histomorphometry) and distal femur (via μCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl‐Ab and TE both prevented SCI‐induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl‐Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl‐Ab and SCI + TE animals, whereas only Scl‐Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI‐induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl‐Ab prevents osteoporosis in the SCI population.


Journal of Neurotrauma | 2013

Effects of Acute Intrathecal Baclofen in an Animal Model of TBI-Induced Spasticity, Cognitive, and Balance Disabilities

Prodip Bose; Jiamei Hou; Rachel Nelson; Nicole Nissim; Ron Parmer; Jonathon Keener; Paul W. Wacnik; Floyd J. Thompson

Spasticity is a major health problem for patients with traumatic brain injury (TBI). In addition to spasticity, TBI patients exhibit enduring cognitive, balance, and other motor impairments. Although the use of antispastic medications, particularly ITB, can decrease the severity of TBI-induced spasticity, current guidelines preclude the use of ITB during the first year after TBI. Therefore, the present study was performed to quantitate disability in an animal model of closed-head TBI (cTBI; Mararous model) after ITB treatment. After cTBI, significant deficits in spasticity and gait, cognitive, balance, and anxiety-like behaviors were detected. ITB (Lioresal(®)) or saline was administered using Alzet pumps (0.8 μg/hour for 4 weeks). Spasticity measures using velocity-dependent ankle torque and ankle extensor muscle electromyography recordings, footprints (gait), balance performance tests, serial learning, and anxiety-like behaviors were performed at multiple post-treatment and -withdrawal of ITB time points. Our data indicated that 1 month of ITB treatment initiated at post-TBI week 1 blocked the early onset of spasticity and significantly attenuated late-onset spasticity and anxiety-like behavior with no significant adverse effects on cognitive and balance performance. This improved spasticity outcome was accompanied by marked up-regulation of gamma-aminobutyric acid (GABA)/GABAb, norepinephrine, and brain-derived neurotrophic factor expression in spinal cord tissue. Early intervention with ITB treatment was safe, feasible, and effective in this cTBI animal model. Collectively, these data provide a strong molecular footprint of enhanced expression of reflex regulation by presynaptic inhibition. The possibility that acute ITB treatment may decrease maladaptive segmental and descending plasticity is discussed. The data provided by the present animal model initiates a pre-clinical platform for safety, feasibility, and efficacy of early ITB intervention after TBI.


Frontiers in Physiology | 2012

Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury and Locomotor Training

Prodip Bose; Jiamei Hou; Ronald Parmer; Paul J. Reier; Floyd J. Thompson

Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612–49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8–12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350–612°/s). Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and open field locomotor ability) and reflex rate-depression, a quantitative assessment of neurophysiological processes that regulate segmental reflex excitability, compared with those of untrained injured controls. Light microscopic qualitative studies of spared tissue revealed better preservation of myelin, axons, and collagen morphology in both locomotor trained animals. Both locomotor trained groups revealed decreased lesion volume (rostro-caudal extension) and more spared tissue at the lesion site. These improvements were accompanied by marked upregulation of BDNF, GABA/GABAb, and monoamines (e.g., norepinephrine and serotonin) which might account for these improved functions. These data are the first to indicate that the therapeutic efficacy of ergonomically practical cycle training is equal to that of the more labor-intensive treadmill training in reducing spasticity and improving locomotion following SCI in an animal model.


Journal of Neurotrauma | 2014

Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury.

Jiamei Hou; Rachel Nelson; Nicole Nissim; Ronald Parmer; Floyd J. Thompson; Prodip Bose

Spasticity and gait impairments are two common disabilities after cervical spinal cord injury (C-SCI). In this study, we tested the therapeutic effects of early treadmill locomotor training (Tm) initiated at postoperative (PO) day 8 and continued for 6 weeks with injury site transcranial magnetic stimulation (TMSsc) on spasticity and gait impairments after low C6/7 moderate contusion C-SCI in a rat model. The combined treatment group (Tm+TMSsc) showed the most robust decreases in velocity-dependent ankle torques and triceps surae electromyography burst amplitudes that were time locked to the initial phase of lengthening, as well as the most improvement in limb coordination quantitated using three-dimensional kinematics and CatWalk gait analyses, compared to the control or single-treatment groups. These significant treatment-associated decreases in measures of spasticity and gait impairment were also accompanied by marked treatment-associated up-regulation of dopamine beta-hydroxylase, glutamic acid decarboxylase 67, gamma-aminobutyric acid B receptor, and brain-derived neurotrophic factor in the lumbar spinal cord (SC) segments of the treatment groups, compared to tissues from the C-SCI nontreated animals. We propose that the treatment-induced up-regulation of these systems enhanced the adaptive plasticity in the SC, in part through enhanced expression of pre- and postsynaptic reflex regulatory processes. Further, we propose that locomotor exercise in the setting of C-SCI may decrease aspects of the spontaneous maladaptive segmental and descending plasticity. Accordingly, TMSsc treatment is characterized as an adjuvant stimulation that may further enhance this capacity. These data are the first to suggest that a combination of Tm and TMSsc across the injury site can be an effective treatment modality for C-SCI-induced spasticity and gait impairments and provided a pre-clinical demonstration for feasibility and efficacy of early TMSsc intervention after C-SCI.


Journal of Neurotrauma | 2002

Chronic Intrathecal Baclofen Treatment and Withdrawal: I. Changes in Ankle Torque and Hind Limb Posture in Normal Rats

David C. Wang; Prodip Bose; Ronald Parmer; Floyd J. Thompson

This study evaluated reflex excitability and locomotor changes during chronic intrathecal infusion of the GABAb agonist baclofen (ITB) and its withdrawal, in the rat. We observed sustained velocity dependent decreases in ankle torque during four weeks of ITB treatment. These changes were correlated with a significant reduction of the EMG burst magnitude time locked to the dynamic phase of ankle dorsiflexion during the first ITB treatment week. However, a considerable recovery of EMG magnitude was observed during the third and fourth weeks of treatment. During baclofen withdrawal, significantly increased velocity dependent ankle torque was observed for 4 weeks. These increases in ankle torque were correlated with increased magnitudes of EMG time locked to the dynamic phase of ankle rotation. Measures of hind limb axis and base of support were obtained using analysis of footprints on a treadmill during ITB treatment and withdrawal periods. During ITB treatment and for up to 7 weeks of withdrawal, hindlimb axis and base of support were significantly altered compared with vehicle controls. These studies were performed to provide a foundation for evaluation of treatment and withdrawal in the setting of experimental chronic contusion spinal cord injury.


Neuropharmacology | 2016

Trigeminal neuroplasticity underlies allodynia in a preclinical model of mild closed head traumatic brain injury (cTBI)

Golam Mustafa; Jiamei Hou; Shigeharu Tsuda; Rachel Nelson; Ankita Sinharoy; Zachary Wilkie; Rahul Pandey; Robert M. Caudle; John K. Neubert; Floyd J. Thompson; Prodip Bose

Post-traumatic headache (PTH) following TBI is a common and often persisting pain disability. PTH is often associated with a multimodal central pain sensitization on the skin surface described as allodynia. However, the particular neurobiology underlying cTBI-induced pain disorders are not known. These studies were performed to assess trigeminal sensory sensitization and to determine if sensitization measured behaviorally correlated with detectable changes in portions of the trigeminal sensory system (TSS), particularly trigeminal nucleus, thalamus, and sensory cortex. Thermal stimulation is particularly well suited to evaluate sensitization and was used in these studies. Recent advances in the use of reward/conflict paradigms permit use of operant measures of behavior, versus reflex-driven response behaviors, for thermal sensitization studies. Thus, to quantitate facial thermal sensitization (allodynia) in the setting of acute TBI, the current study utilized an operant orofacial pain reward/conflict testing paradigm to assess facial thermal sensitivity in uninjured control animals compared with those two weeks after cTBI in a rodent model. Significant reductions in facial contact/lick behaviors were observed in the TBI animals using either cool or warm challenge temperatures compared with behaviors in the normal animals. These facial thermal sensitizations correlated with detectable changes in multiple levels of the TSS. The immunohistochemical (IHC) studies revealed significant alterations in the expression of the serotonin (5-HT), neurokinin 1 receptor (NK1R), norepinephrine (NE), and gamma-aminobutyric acid (GABA) in the caudal trigeminal nucleus, thalamic VPL/VPM nucleus, and sensory cortex of the orofacial pain pathways. There was a strong correlation between increased expression of certain IHC markers and increased behavioral markers for facial sensitization. The authors conclude that TBI-induced changes observed in the TSS are consistent with the expression of generalized facial allodynia following cTBI. To our knowledge, this is the first report of orofacial sensitization correlated with changes in selected neuromodulators/neurotransmitters in the TSS following experimental mild TBI.

Collaboration


Dive into the Prodip Bose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Ye

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge