Przemek J. Bock
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Przemek J. Bock.
Optics Letters | 2010
Pavel Cheben; Przemek J. Bock; Jens H. Schmid; J. Lapointe; Siegfried Janz; Dan-Xia Xu; A. Densmore; André Delâge; B. Lamontagne; Trevor J. Hall
We use subwavelength gratings (SWGs) to engineer the refractive index in microphotonic waveguides, including practical components such as input couplers and multiplexer circuits. This technique allows for direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6-3.5 by lithographic patterning. We demonstrate two experimental examples of refractive index engineering, namely, a microphotonic fiber-chip coupler with a coupling loss as small as -0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide. This yields an operation bandwidth of 170nm for a device size of only approximately 160microm x100microm.
Optics Express | 2010
Przemek J. Bock; Pavel Cheben; Jens H. Schmid; J. Lapointe; André Delâge; Siegfried Janz; Geof C. Aers; Dan-Xia Xu; A. Densmore; Trevor J. Hall
We report on the experimental demonstration and analysis of a new waveguide principle using subwavelength gratings. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Subwavelength grating waveguides in silicon-on-insulator are fabricated with a single etch step and allow for flexible control of the effective refractive index of the waveguide core simply by lithographic patterning. Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguides with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides. The measured group index is nearly constant n(g) ~1.5 over a wavelength range exceeding the telecom C-band.
Optics Express | 2010
Przemek J. Bock; Pavel Cheben; Jens H. Schmid; J. Lapointe; André Delâge; Dan-Xia Xu; Siegfried Janz; A. Densmore; Trevor J. Hall
We report on the design, simulation and experimental demonstration of a new type of waveguide crossing based on subwavelength gratings in silicon waveguides. We used 3D finite-difference time-domain simulations to minimize loss, crosstalk and polarization dependence. Measurement of fabricated devices show that our waveguide crossings have a loss as low as -0.023 dB/crossing, polarization dependent loss of < 0.02 dB and crosstalk <-40 dB.
Optics Letters | 2013
Aitor V. Velasco; Pavel Cheben; Przemek J. Bock; André Delâge; Jens H. Schmid; J. Lapointe; Siegfried Janz; M. L. Calvo; Dan-Xia Xu; Miroslaw Florjanczyk; M. Vachon
We report a stationary Fourier-transform spectrometer chip implemented in silicon microphotonic waveguides. The device comprises an array of 32 Mach-Zehnder interferometers (MZIs) with linearly increasing optical path delays between the MZI arms across the array. The optical delays are achieved by using Si-wire waveguides arranged in tightly coiled spirals with a compact device footprint of 12 mm2. Spectral retrieval is demonstrated in a single measurement of the stationary spatial interferogram formed at the output waveguides of the array, with a wavelength resolution of 40 pm within a free spectral range of 0.75 nm. The phase and amplitude errors arising from fabrication imperfections are compensated using a transformation matrix spectral retrieval algorithm.
Optics Express | 2011
Ivan Glesk; Przemek J. Bock; Pavel Cheben; Jens H. Schmid; J. Lapointe; Siegfried Janz
We report on the experimental demonstration of ultrafast all-optical switching and wavelength down-conversion based on a novel nonlinear Mach-Zehnder interferometer with subwavelength grating and wire waveguides. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Since the device had no dedicated port to input optical signal to control switching a new approach was also implemented for all-optical switching control.
Optics Letters | 2011
Jens H. Schmid; Marc Ibrahim; Pavel Cheben; J. Lapointe; Siegfried Janz; Przemek J. Bock; A. Densmore; B. Lamontagne; R. Ma; Winnie N. Ye; D.-X. Xu
We demonstrate, by experiment and numerical calculations, temperature-independent subwavelength grating waveguides with a periodic composite core composed of alternating regions of silicon and SU-8 polymer. The polymer has a negative thermo-optic (TO) material coefficient that cancels the large positive TO effect of the silicon. Measurements and Bloch mode calculations were carried out over a range of silicon-polymer duty ratios. The lowest measured TO coefficient at a wavelength of 1550 nm is 1.8×10(-6) K(-1); 2 orders of magnitude smaller than a conventional silicon photonic wire waveguide. Calculations predict the possibility of complete cancellation of the silicon waveguide temperature dependence.
Optics Express | 2008
Przemek J. Bock; Pavel Cheben; André Delâge; Jens H. Schmid; Dan-Xia Xu; Siegfried Janz; Trevor J. Hall
We propose an original diffraction grating demultiplexer device with a very small footprint, designed for the silicon-on-insulator waveguide platform. The wavelength dispersive properties are provided by a second-order diffraction grating designed to be lithographically defined and etched in the sidewall of a curved Si waveguide. The grating is blazed to maximize the -1st order diffraction efficiency. The diffracted light is coupled into the silicon slab waveguide via an impedance matching subwavelength grating gradient index antireflective interface. The waveguide is curved in order to focus the light onto the Rowland circle, where different wavelengths are intercepted by different receiver waveguides. The phase errors were substantially reduced using an apodized design with a chirped grating, which assures a constant effective index along the grating length. The simulated crosstalk is -30 dB. The device has 15 channels with a spacing of 25 nm, thus a broadband operational bandwidth of 375 nm. Its performance approaches the diffraction limit. The layout size is 90 µm×140 µm, which is the smallest footprint yet reported for a mux/dmux device of a similar performance.
Optics Express | 2012
Przemek J. Bock; Pavel Cheben; Jens H. Schmid; Aitor V. Velasco; André Delâge; Siegfried Janz; Dan-Xia Xu; J. Lapointe; Trevor J. Hall; M. L. Calvo
We experimentally demonstrate a new type of waveguide multiplexer device designed for silicon photonics, with a crosstalk level as low as -35 dB and an operational wavelength range of 300 nm. A compact device footprint of only 100 × 160 µm2 offers an excellent potential for integration with other silicon nanophotonic circuits.
IEEE Photonics Journal | 2011
Jens H. Schmid; Pavel Cheben; Przemek J. Bock; Robert Halir; J. Lapointe; Siegfried Janz; A. Delage; A. Densmore; J.-M. Fedeli; Trevor J. Hall; B. Lamontagne; R. Ma; I. Molina-Fernandez; D.-X. Xu
In this review, we summarize and discuss our recent studies of subwavelength grating (SWG) structures for engineering the refractive index of silicon microphotonic waveguides. The SWG effect allows control of the effective refractive index of a waveguide core over a range spanning the values of the cladding material and silicon by lithographic patterning. We demonstrate this effect with the example of segmented photonic wire waveguides, which are shown to exhibit low propagation loss, and can be used to make highly efficient waveguide crossings and in-plane fiber-chip coupling structures. Other applications of SWG structures in silicon photonic waveguide devices include surface grating couplers with enhanced performance and simplified fabrication requirements, as well as a novel curved waveguide sidewall grating micro-spectrometer, in which an SWG structure fulfills a dual purpose by acting as an effective slab waveguide for diffracted light and as a lateral cladding for a channel waveguide.
Optics Express | 2009
Przemek J. Bock; Pavel Cheben; Jens H. Schmid; André Delâge; Dan-Xia Xu; Siegfried Janz; Trevor J. Hall
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.