Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qichun Yang is active.

Publication


Featured researches published by Qichun Yang.


Global Biogeochemical Cycles | 2015

Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

Hanqin Tian; Chaoqun Lu; Jia Yang; Kamaljit Banger; Deborah N. Huntzinger; Christopher R. Schwalm; Anna M. Michalak; R. B. Cook; Philippe Ciais; Daniel J. Hayes; Maoyi Huang; Akihiko Ito; Atul K. Jain; Huimin Lei; Jiafu Mao; Shufen Pan; Wilfred M. Post; Shushi Peng; Benjamin Poulter; Wei Ren; Daniel M. Ricciuto; Kevin Schaefer; Xiaoying Shi; Bo Tao; Weile Wang; Yaxing Wei; Qichun Yang; Bowen Zhang; Ning Zeng

Abstract Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land‐atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process‐based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century‐long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project and two observation‐based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 1015 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr−1 with a median value of 51 Pg C yr−1 during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross‐model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from −70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble‐estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO2 and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.


Journal of Geophysical Research | 2015

Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A process‐based modeling study

Hanqin Tian; Qichun Yang; Raymond G. Najjar; Wei Ren; Marjorie A. M. Friedrichs; Charles S. Hopkinson; Shufen Pan

The magnitude, spatiotemporal patterns, and controls of carbon flux from land to the ocean remain uncertain. Here we applied a process-based land model with explicit representation of carbon processes in streams and rivers to examine how changes in climate, land conversion, management practices, atmospheric CO2, and nitrogen deposition affected carbon fluxes from eastern North America to the Atlantic Ocean, specifically the Gulf of Maine (GOM), Middle Atlantic Bight (MAB), and South Atlantic Bight (SAB). Our simulation results indicate that the mean annual fluxes (±1 standard deviation) of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the past three decades (1980–2008) were 2.37 ± 0.60, 1.06 ± 0.20, and 3.57 ± 0.72 Tg C yr−1, respectively. Carbon export demonstrated substantial spatial and temporal variability. For the region as a whole, the model simulates a significant decrease in riverine DIC fluxes from 1901 to 2008, whereas there were no significant trends in DOC or POC fluxes. In the SAB, however, there were significant declines in the fluxes of all three forms of carbon, and in the MAB subregion, DIC and POC fluxes declined significantly. The only significant trend in the GOM subregion was an increase in DIC flux. Climate variability was the primary cause of interannual variability in carbon export. Land conversion from cropland to forest was the primary factor contributing to decreases in all forms of C export, while nitrogen deposition and fertilizer use, as well as atmospheric CO2 increases, tended to increase DOC, POC, and DIC fluxes.


Earth’s Future | 2015

Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century

Shufen Pan; Hanqin Tian; Shree R. S. Dangal; Qichun Yang; Jia Yang; Chaoqun Lu; Bo Tao; Wei Ren; Zhiyun Ouyang

Quantifying the spatial and temporal patterns of the water lost to the atmosphere through land surface evapotranspiration (ET) is essential for understanding the global hydrological cycle, but remains much uncertain. In this study, we use the Dynamic Land Ecosystem Model to estimate the global terrestrial ET during 2000–2009 and project its changes in response to climate change and increasing atmospheric CO2 under two IPCC SRES scenarios (A2 and B1) during 2010–2099. Modeled results show a mean annual global terrestrial ET of about 549 (545–552) mm yr−1 during 2000–2009. Relative to the 2000s, global terrestrial ET for the 2090s would increase by 30.7 mm yr−1 (5.6%) and 13.2 mm yr−1 (2.4%) under the A2 and B1 scenarios, respectively. About 60% of global land area would experience increasing ET at rates of over 9.5 mm decade−1 over the study period under the A2 scenario. The Arctic region would have the largest ET increase (16% compared with the 2000s level) due to larger increase in temperature than other regions. Decreased ET would mainly take place in regions like central and western Asia, northern Africa, Australia, eastern South America, and Greenland due to declines in soil moisture and changing rainfall patterns. Our results indicate that warming temperature and increasing precipitation would result in large increase in ET by the end of the 21st century, while increasing atmospheric CO2 would be responsible for decrease in ET, given the reduction of stomatal conductance under elevated CO2.


Geophysical Research Letters | 2014

Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO2

Bo Tao; Hanqin Tian; Wei Ren; Jia Yang; Qichun Yang; Ruoying He; Wei-Jun Cai; Steven E. Lohrenz

Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. A process-based projection for the Mississippi River basin suggests that river discharge would be substantially enhanced (10.7–59.8%) by the 2090s compared to the recent decade (2000s), although large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high-emission scenario (A2) of the Intergovernmental Panel for Climate Change, while climate change would still play the dominant role under the low-emission scenario (B1). This study highlights the important role of anthropogenic factors in influencing future hydrological processes and water resources.


PLOS ONE | 2014

Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

Shufen Pan; Hanqin Tian; Shree R. S. Dangal; Chi Zhang; Jia Yang; Bo Tao; Zhiyun Ouyang; Xiaoke Wang; Chaoqun Lu; Wei Ren; Kamaljit Banger; Qichun Yang; Bowen Zhang; Xia Li

Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.


Journal of Geophysical Research | 2015

Chesapeake Bay nitrogen fluxes derived from a land‐estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

Yang Feng; Marjorie A. M. Friedrichs; John Wilkin; Hanqin Tian; Qichun Yang; Eileen E. Hofmann; Jerry D. Wiggert; Raleigh R. Hood

Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.


PLOS ONE | 2012

Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China.

Xia Li; Baoshan Cui; Qichun Yang; Hanqin Tian; Yan Lan; Tingting Wang; Zhen Han

Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes.


Journal of Geophysical Research | 2015

Increased nitrogen export from eastern North America to the Atlantic Ocean due to climatic and anthropogenic changes during 1901–2008

Qichun Yang; Hanqin Tian; Marjorie A. M. Friedrichs; Charles S. Hopkinson; Chaoqun Lu; Raymond G. Najjar

We used a process-based land model, Dynamic Land Ecosystem Model 2.0, to examine how climatic and anthropogenic changes affected riverine fluxes of ammonium (NH4+), nitrate (NO3−), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) from eastern North America, especially the drainage areas of the Gulf of Maine (GOM), Mid-Atlantic Bight (MAB), and South Atlantic Bight (SAB) during 1901–2008. Model simulations indicated that annual fluxes of NH4+, NO3−, DON, and PON from the study area during 1980–2008 were 0.019 ± 0.003 (mean ± 1 standard deviation) Tg N yr−1, 0.18 ± 0.035 Tg N yr−1, 0.10 ± 0.016 Tg N yr−1, and 0.043 ± 0.008 Tg N yr−1, respectively. NH4+, NO3−, and DON exports increased while PON export decreased from 1901 to 2008. Nitrogen export demonstrated substantial spatial variability across the study area. Increased NH4+ export mainly occurred around major cities in the MAB. NO3− export increased in most parts of the MAB but decreased in parts of the GOM. Enhanced DON export was mainly distributed in the GOM and the SAB. PON export increased in coastal areas of the SAB and northern parts of the GOM but decreased in the Piedmont areas and the eastern parts of the MAB. Climate was the primary reason for interannual variability in nitrogen export; fertilizer use and nitrogen deposition tended to enhance the export of all nitrogen species; livestock farming and sewage discharge were also responsible for the increases in NH4+ and NO3− fluxes; and land cover change (especially reforestation of former agricultural land) reduced the export of the four nitrogen species.


Science of The Total Environment | 2016

Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012

Qichun Yang; Hanqin Tian; Xia Li; Wei Ren; Bowen Zhang; Xuesong Zhang; Julie Wolf

Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.8 9 ± 0.64 Tg N yr.(-1) (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg Pyr.(-1) (1 Tg = 10(12)g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global change.


Journal of Geographical Sciences | 2015

Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century

Shufen Pan; Hanqin Tian; Shree R. S. Dangal; Zhiyun Ouyang; Chaoqun Lu; Jia Yang; Bo Tao; Wei Ren; Kamaljit Banger; Qichun Yang; Bowen Zhang

A wide variety of studies have estimated the magnitude of global terrestrial net primary production (NPP), but its variations, both spatially and temporally, still remain uncertain. By using an improved process-based terrestrial ecosystem model (DLEM, Dynamic Land Ecosystem Model), we provide an estimate of global terrestrial NPP induced by multiple environmental factors and examine the response of terrestrial NPP to climate variability at biome and global levels and along latitudes throughout the first decade of the 21st century. The model simulation estimates an average global terrestrial NPP of 54.6 Pg C yr–1 during 2000–2009, varying from 52.8 Pg C yr–1 in the dry year of 2002 to 56.4 Pg C yr–1 in the wet year of 2008. In wet years, a large increase in terrestrial NPP compared to the decadal mean was prevalent in Amazonia, Africa and Australia. In dry years, however, we found a 3.2% reduction in global terrestrial NPP compared to the decadal mean, primarily due to limited moisture supply in tropical regions. At a global level, precipitation explained approximately 63% of the variation in terrestrial NPP, while the rest was attributed to changes in temperature and other environmental factors. Precipitation was the major factor determining inter-annual variation in terrestrial NPP in low-latitude regions. However, in mid- and high-latitude regions, temperature variability largely controlled the magnitude of terrestrial NPP. Our results imply that projected climate warming and increasing climate extreme events would alter the magnitude and spatiotemporal patterns of global terrestrial NPP.

Collaboration


Dive into the Qichun Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Ren

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Tao

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge