Qilin Cao
University of Louisville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qilin Cao.
Experimental Neurology | 2001
Qilin Cao; Y. Ping Zhang; Russell M. Howard; Winston M. Walters; Pantelis Tsoulfas; Scott R. Whittemore
Proliferating populations of undifferentiated neural stem cells were isolated from the embryonic day 14 rat cerebral cortex or the adult rat subventricular zone. These cells were pluripotent through multiple passages, retaining the ability to differentiate in vitro into neurons, astrocytes, and oligodendrocytes. Two weeks to 2 months after engraftment of undifferentiated, BrdU-labeled stem cells into the normal adult spinal cord, large numbers of surviving cells were seen. The majority of the cells differentiated with astrocytic phenotype, although some oligodendrocytes and undifferentiated, nestin-positive cells were detected; NeuN-positive neurons were not seen. Labeled cells were also engrafted into the contused adult rat spinal cord (moderate NYU Impactor injury), either into the lesion cavity or into the white or gray matter both rostral and caudal to the injury epicenter. Up to 2 months postgrafting, the majority of cells either differentiated into GFAP-positive astrocytes or remained nestin positive. No BrdU-positive neurons or oligodendrocytes were observed. These results show robust survival of engrafted stem cells, but a differentiated phenotype restricted to glial lineages. We suggest that in vitro induction prior to transplantation will be necessary for these cells to differentiate into neurons or large numbers of oligodendrocytes.
The Journal of Neuroscience | 2005
Qilin Cao; Xiao Ming Xu; William H. DeVries; Gaby U. Enzmann; Peipei Ping; Pantelis Tsoulfas; Patrick M. Wood; Mary Bartlett Bunge; Scott R. Whittemore
Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A-GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)-GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC). Ultrastructural analysis showed that the grafted GRPs formed morphologically normal-appearing myelin sheaths around the axons in the ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC+ oligodendrocytes of grafted GRPs (15-30%). Most importantly, 8 of 12 rats receiving grafts of D15A-GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP-GRPs, D15A-NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A-GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and GRP grafts can facilitate functional recovery after traumatic SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
Experimental Neurology | 2002
Qilin Cao; Russell M. Howard; Jessica B. Dennison; Scott R. Whittemore
Differentiation of pluripotent neural stem cells engrafted into the adult normal and injured spinal cord is restricted to the glial lineage, suggesting that in vitro induction toward a neuronal lineage prior to transplantation and/or modification of the host environment may be necessary to initiate and increase the differentiation of neurons. In the present study, we investigated the differentiation of neuronal-restricted precursors (NRPs) grafted into the normal and contused adult rat spinal cord. NRPs proliferated through multiple passages in the presence of FGF2 and NT3 and differentiated into only neurons in vitro in the presence of retinoic acid and the absence of FGF2. Differentiated NRPs expressed GABA, glycine, glutamate, and ChAT. Two weeks to 2 months after engraftment of undifferentiated NRPs into adult normal spinal cord, large numbers of surviving cells were seen in all of the animals. The majority differentiated into betaIII-tubulin-positive neurons. Some transplanted NRPs expressed GABA and small numbers were glutamate- and ChAT-positive. NRPs were also transplanted into the epicenter of the contused adult rat spinal cord. Two weeks to 2 months after transplantation, some engrafted NRPs remained undifferentiated nestin-positive cells. Small numbers were MAP2- or betaIII-tubulin-positive neurons. However, the expression of GABA, glutamate, or ChAT was not observed. These results show that NRPs can differentiate into different types of neurons in the normal adult rat spinal cord, but that such differentiation is inhibited in the injured spinal cord. Manipulation of the microenvironment in the injured spinal cord will likely be necessary to facilitate neuronal replacement.
The Journal of Neuroscience | 2002
David N. Loy; David S.K. Magnuson; Y. Ping Zhang; Stephen M. Onifer; Michael D. Mills; Qilin Cao; Jessica B. Darnall; Lily C. Fajardo; Darlene A. Burke; Scott R. Whittemore
Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF–VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC–VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal.
The Journal of Neuroscience | 2010
Qilin Cao; Qian He; Yaping Wang; Xiaoxin Cheng; Russell M. Howard; Yiping Zhang; William H. DeVries; Christopher B. Shields; David S.K. Magnuson; Xiao Ming Xu; Dong H. Kim; Scott R. Whittemore
Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs, and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI.
Experimental Neurology | 2005
Qilin Cao; Yi Ping Zhang; Christopher Iannotti; William H. DeVries; Xiao Ming Xu; Christopher B. Shields; Scott R. Whittemore
A graded contusion spinal cord injury (SCI) was created in the adult rat spinal cord using the Infinite Horizons (IH) impactor to study the correlation between injury severity and anatomical, behavioral, and electrophysiological outcomes. Adult Fisher rats were equally divided into five groups and received contusion injuries at the ninth thoracic level (T9) with 100, 125, 150, 175, or 200 kdyn impact forces, respectively. Transcranial magnetic motor-evoked potentials (tcMMEPs) and BBB open-field locomotor analyses were performed weekly for 4 weeks postinjury. Our results demonstrated that hindlimb locomotor function decreased in accordance with an increase in injury severity. The locomotor deficits were proportional to the amount of damage to the ventral and lateral white matter (WM). Locomotor function was strongly correlated to the amount of spared WM, which contains the reticulospinal and propriospinal tracts. Normal tcMMEP latencies were recorded in control, all of 100-kdyn-injured and half of 125-kdyn-injured animals. Delayed latency responses were recorded in some of 125-kdyn-injured and all of 150-kdyn-injured animals. No tcMMEP responses were recorded in 175- and 200-kdyn-injured animals. Comparison of tcMMEP responses with areas of WM loss or demyelination identified the medial ventrolateral funiculus (VLF) as the location of the tcMMEP pathway. Immunohistochemical and electromicroscopic (EM) analyses showed the presence of demyelinated axons in WM tracts surrounding the lesion cavities at 28 days postinjury. These data support the notion that widespread WM damage in the ventral and lateral funiculi may be a major cause for locomotor deficits and lack of tcMMEP responses after SCI.
Glia | 2006
Jason F. Talbott; Qilin Cao; Gaby U. Enzmann; Richard L. Benton; Virginie Achim; Xiao X. Cheng; Michael D. Mills; Mahendra S. Rao; Scott R. Whittemore
The development of remyelinating strategies designed to enhance recruitment and differentiation of endogenous precursor cells available to a site of demyelination in the adult spinal cord will require a fundamental understanding of the potential for adult spinal cord precursor cells to remyelinate as well as an insight into epigenetic cues that regulate their mobilization and differentiation. The ability of embryonic and postnatal neural precursor cell transplants to remyelinate the adult central nervous system is well documented, while no transplantation studies to date have examined the remyelinating potential of adult spinal‐cord‐derived oligodendrocyte precursor cells (adult OPCs). In the present study, we demonstrate that, when transplanted subacutely into spinal ethidium bromide/X‐irradiated (EB‐X) lesions, adult OPCs display a limited capacity for oligodendrocyte remyelination. Interestingly, the glia‐free environment of EB lesions promotes engrafted adult OPCs to differentiate primarily into cells with immunophenotypic and ultrastructural characteristics of myelinating Schwann cells (SCs). Astrocytes modulate this potential, as evidenced by the demonstration that SC‐like differentiation is blocked when adult OPCs are co‐transplanted with astrocytes. We further show that inhibition of bone morphogenetic protein (BMP) signaling through noggin overexpression by engrafted adult OPCs is sufficient to block SC‐like differentiation within EB‐X lesions. Present data suggest that the macroglial‐free environment of acute EB lesions in the ventrolateral funiculus is inhibitory to adult spinal cord‐derived OPC differentiation into remyelinating oligodendrocytes, while the presence of BMPs and absence of noggin promotes SC‐like differentiation, thereby unmasking a surprising lineage fate for these cells.
Experimental Neurology | 2007
Jason F. Talbott; Qilin Cao; James P. Bertram; Michael K. Nkansah; Richard L. Benton; Erin B. Lavik; Scott R. Whittemore
Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that, although CNTF has a potent survival and differentiation promoting effect in vitro on OPCs isolated from the adult spinal cord, CNTF administration in vivo is not sufficient to promote oligodendrocyte remyelination in the glial-depleted environment of unilateral ethidium bromide (EB) lesions.
Glia | 2009
Jun Cai; Qiang Zhu; Kang Zheng; Hong Li; Yingchuan Qi; Qilin Cao; Mengsheng Qiu
Recent studies have suggested that Nkx6.2/Gtx and Nkx2.2 homeodomain transcription factors are involved in the regulation of oligodendrocyte maturation and/or myelination which occur predominantly in postnatal stages. However, their cellular specificity in postnatal central nervous system has not been characterized and their dynamic expressional relationship during oligodendrocyte lineage progression has not been determined. Here we report that both Nkx2.2 and Nkx6.2 are selectively expressed in Olig2+ cells of oligodendrocyte lineage in postnatal spinal cords. Although Nkx6.2 is specifically expressed in the APC+ mature oligodendrocytes, Nkx2.2 is initially expressed in differentiating oligodendrocyte precursor cells (OPCs) but quickly down‐regulated as OPCs undergo terminal differentiation. Intriguingly, Nkx2.2 expression is up‐regulated in mature myelinating oligodendrocytes at later stages. The co‐expression of Nkx2.2 and Nkx6.2 transcription factors in myelinating oligodendrocytes suggests their functional interactions in the regulation of myelin sheath formation and/or maintenance.
Neurosurgery | 2005
David Loy; Angela E. Sroufe; Jennifer L. Pelt; Darlene A. Burke; Qilin Cao; Jason F. Talbott; Scott R. Whittemore
OBJECTIVE:We evaluated whether serum levels of neuron-specific enolase (NSE) and S-100β protein are biomarkers for traumatic injury in an animal model of spinal cord injury (SCI). METHODS:Enzyme-linked immunosorbent assay serum measurements of NSE and S-100β and assays of serum protein were compared at 6 and 24 hours after a graded contusive SCI (150 or 200 kdyn IH impactor injury (Infinite Horizons, L.L.C., Lexington, KY) or sham laminectomy at T9 in 30 female Sprague-Dawley rats. Serum from control animals was also analyzed. RESULTS:Increases in serum levels of NSE were observed for 200-kdyn (3.1-fold, P < 0.001) and 150-kdyn (2.3-fold, P < 0.001) injury groups at 6 hours after injury, which decreased by 73.7% (P < 0.001) and 65.2% (P < 0.001) at 24 hours after SCI, respectively; the levels were still greater than in sham animals (P < 0.001, P = 0.001). The 200- and 150-kdyn injury groups were not different at either time point. S-100β serum levels increased at 6 hours in the 200-kdyn injury group (P < 0.05), and no differences from sham levels were seen at 24 hours. No differences in total protein concentrations were observed between the injury and control groups. CONCLUSION:Present data suggest that NSE and S-100β serum levels may be useful experimental tools for the acute measurement of tissue loss after SCI. Despite significant shortcomings, NSE and S-100β serum measurements in acute SCI patients with clinically defined functional deficits should allow comparisons with well-characterized SCI animal models. Future efforts to develop biomarkers that predict functional outcomes in the acute phase should focus on axon-specific proteins as markers of secondary axonal loss and regeneration.