Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell M. Howard is active.

Publication


Featured researches published by Russell M. Howard.


Experimental Neurology | 2001

Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage.

Qilin Cao; Y. Ping Zhang; Russell M. Howard; Winston M. Walters; Pantelis Tsoulfas; Scott R. Whittemore

Proliferating populations of undifferentiated neural stem cells were isolated from the embryonic day 14 rat cerebral cortex or the adult rat subventricular zone. These cells were pluripotent through multiple passages, retaining the ability to differentiate in vitro into neurons, astrocytes, and oligodendrocytes. Two weeks to 2 months after engraftment of undifferentiated, BrdU-labeled stem cells into the normal adult spinal cord, large numbers of surviving cells were seen. The majority of the cells differentiated with astrocytic phenotype, although some oligodendrocytes and undifferentiated, nestin-positive cells were detected; NeuN-positive neurons were not seen. Labeled cells were also engrafted into the contused adult rat spinal cord (moderate NYU Impactor injury), either into the lesion cavity or into the white or gray matter both rostral and caudal to the injury epicenter. Up to 2 months postgrafting, the majority of cells either differentiated into GFAP-positive astrocytes or remained nestin positive. No BrdU-positive neurons or oligodendrocytes were observed. These results show robust survival of engrafted stem cells, but a differentiated phenotype restricted to glial lineages. We suggest that in vitro induction prior to transplantation will be necessary for these cells to differentiate into neurons or large numbers of oligodendrocytes.


Experimental Neurology | 2002

Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord

Qilin Cao; Russell M. Howard; Jessica B. Dennison; Scott R. Whittemore

Differentiation of pluripotent neural stem cells engrafted into the adult normal and injured spinal cord is restricted to the glial lineage, suggesting that in vitro induction toward a neuronal lineage prior to transplantation and/or modification of the host environment may be necessary to initiate and increase the differentiation of neurons. In the present study, we investigated the differentiation of neuronal-restricted precursors (NRPs) grafted into the normal and contused adult rat spinal cord. NRPs proliferated through multiple passages in the presence of FGF2 and NT3 and differentiated into only neurons in vitro in the presence of retinoic acid and the absence of FGF2. Differentiated NRPs expressed GABA, glycine, glutamate, and ChAT. Two weeks to 2 months after engraftment of undifferentiated NRPs into adult normal spinal cord, large numbers of surviving cells were seen in all of the animals. The majority differentiated into betaIII-tubulin-positive neurons. Some transplanted NRPs expressed GABA and small numbers were glutamate- and ChAT-positive. NRPs were also transplanted into the epicenter of the contused adult rat spinal cord. Two weeks to 2 months after transplantation, some engrafted NRPs remained undifferentiated nestin-positive cells. Small numbers were MAP2- or betaIII-tubulin-positive neurons. However, the expression of GABA, glutamate, or ChAT was not observed. These results show that NRPs can differentiate into different types of neurons in the normal adult rat spinal cord, but that such differentiation is inhibited in the injured spinal cord. Manipulation of the microenvironment in the injured spinal cord will likely be necessary to facilitate neuronal replacement.


The Journal of Neuroscience | 2010

Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury.

Qilin Cao; Qian He; Yaping Wang; Xiaoxin Cheng; Russell M. Howard; Yiping Zhang; William H. DeVries; Christopher B. Shields; David S.K. Magnuson; Xiao Ming Xu; Dong H. Kim; Scott R. Whittemore

Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs, and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI.


Experimental Neurology | 2005

Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord

Gaby U. Enzmann; Richard L. Benton; John P. Woock; Russell M. Howard; Pantelis Tsoulfas; Scott R. Whittemore

Bone morphogenetic proteins (BMPs) are a large class of secreted factors, which serve as modulators of development in multiple organ systems, including the CNS. Studies investigating the potential of stem cell transplantation for restoration of function and cellular replacement following traumatic spinal cord injury (SCI) have demonstrated that the injured adult spinal cord is not conducive to neurogenesis or oligodendrogenesis of engrafted CNS precursors. In light of recent findings that BMP expression is modulated by SCI, we hypothesized that they may play a role in lineage restriction of multipotent grafts. To test this hypothesis, neural stem or precursor cells were engineered to express noggin, an endogenous antagonist of BMP action, prior to transplantation or in vitro challenge with recombinant BMPs. Adult rats were subjected to both contusion and focal ischemic SCI. One week following injury, the animals were transplanted with either EGFP- or noggin-expressing neural stem or precursor cells. Results demonstrate that noggin expression does not antagonize terminal astroglial differentiation in the engrafted stem cells. Furthermore, neutralizing endogenous BMP in the injured spinal cord significantly increased both the lesion volume and the number of infiltrating macrophages in injured spinal cords receiving noggin-expressing stem cell grafts compared with EGFP controls. These data strongly suggest that endogenous factors in the injured spinal microenvironment other than the BMPs restrict the differentiation of engrafted pluripotent neural stem cells as well as suggest other roles for BMPs in tissue protection in the injured CNS.


Journal of Neuroscience Research | 2006

Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems.

Ahmed A. Abdel-Latif; Jennifer L. Pelt; Richard L. Benton; Russell M. Howard; Pantelis Tsoulfas; Peipei Ping; Xiao Ming Xu; Scott R. Whittemore

Viral gene delivery for spinal cord injury (SCI) is a promising approach for enhancing axonal regeneration and neuroprotection. An understanding of spatio‐temporal transgene expression in the spinal cord is essential for future studies of SCI therapies. Commonly, intracellular marker proteins (e.g., EGFP) were used as indicators of transgene levels after viral delivery, which may not accurately reflect levels of secreted transgene. This study examined transgene expression using ELISA after viral delivery of D15A, a neurotrophin with BDNF and NT‐3 activities, at 1, 2, and 4weeks after in vivo and ex vivo delivery using lentiviral, adenoviral, and retroviral vectors. Further, the inflammatory responses and viral infection patterns after in vivo delivery were examined. Lentiviral vectors had the most stable pattern of gene expression, with D15A levels of 536 ± 38 and 363 ± 47 pg/mg protein seen at 4 weeks after the in vivo and ex vivo delivery, respectively. Our results show that protein levels downregulate disproportionately to levels of EGFP after adenoviral vectors both in vivo and ex vivo. D15A dropped from initial levels of 422 ± 87 to 153 ± 18 pg/mg protein at 4 weeks after in vivo administration. Similarly, ex vivo retrovirus‐mediated transgene expression exhibited rapid downregulation by 2 weeks post‐grafting. Compared to adenoviral infection, macrophage activation was attenuated after lentiviral infection. These results suggest that lentiviral vectors are most suitable in situations where stable long‐term transgene expression is needed. Retroviral ex vivo delivery is optional when transient expression within targeted spinal tissue is desired, with adenoviral vectors in between.


Experimental Neurology | 2011

Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI.

Panpan Yu; Yi Zhang; Lisa B.E. Shields; Yiyan Zheng; Xiaoling Hu; Rachel Woodell Hill; Russell M. Howard; Zhen Yu Gu; Darlene A. Burke; Scott R. Whittemore; Xiao Ming Xu; Christopher B. Shields

This study investigated whether neuronal inhibitor of DNA binding 2 (Id2), a regulator of basic helix-loop-helix (bHLH) transcription factors, can activate the intrinsic neuritogenetic mode of dorsal root ganglion (DRG) neurons in adult mice following spinal cord injury (SCI). First, the Id2 developmental expression profile of DRG neurons, along with the correlated activity of Cdh1-anaphase promoting complex (Cdh1-APC), was characterized. Next, a D-box mutant Id2 (Id2DBM) adenoviral vector, resistant to Cdh1-APC degradation, was developed to enhance neuronal Id2 expression. After the vector was introduced into DRG neurons, the effect of Id2 on neurite outgrowth of cultured DRG neurons and sensory axonal regeneration following spinal cord dorsal hemisection was evaluated. The expression of Id2 in DRG neurons was high in the embryonic stage, downregulated after birth, and significantly reduced in the adult. Expression of Cdh1-APC was opposite to Id2, which may be responsible for Id2 degradation during DRG maturation. Overexpression of Id2DBM in DRG neurons enhanced neuritogenesis on both permissive and inhibitory substrates. Following spinal cord dorsal hemisection, overexpression of Id2DBM reduced axon dieback and increased the number and length of regenerative fibers into the lesion gap. Reprogramming the intrinsic growth status of quiescent adult DRG neurons by enhancing Id2 expression results in active neuritogenesis following SCI. Id2 may be a novel target for enhancing sensory axonal regeneration following injuries to the adult spinal cord.


Experimental Neurology | 2009

Oligodendrocyte precursor cells differentially expressing Nogo-A but not MAG are more permissive to neurite outgrowth than mature oligodendrocytes.

Zhengwen Ma; Qilin Cao; Liqun Zhang; Jianguo Hu; Russell M. Howard; Peihua Lu; Scott R. Whittemore; Xiao Ming Xu

Grafting oligodendrocyte precursor cells (OPCs) has been used as a strategy to repair demyelination of the central nervous system (CNS). Whether OPCs can promote CNS axonal regeneration remains to be tested. If so, they should be permissive to axonal growth and may express less inhibitory molecules on their surface. Here we examined the expression of two oligodendrocyte-associated myelin inhibitors Nogo-A and myelin-associated glycoprotein (MAG) during oligodendrogliogenesis and tested their abilities to promote neurite outgrowth in vitro. Whereas the intracellular domain of Nogo-A was consistently expressed throughout oligodendrocyte differentiation, MAG was expressed only at later stages. Furthermore, the membrane-associated extracellular domain of Nogo-A was not expressed in OPCs but expressed in mature oligodendrocytes. In a dorsal root ganglion (DRG) and OPC/oligodendrocyte co-culture model, significantly greater DRG neurite outgrowth onto OPC monolayer than mature oligodendrocyte was found (1042+/-123 vs. 717+/-342 micrometer; p=0.011). Moreover, DRG neurites elongated as fasciculated fiber tracts and contacted directly on OPCs (133+/-37 cells/fascicle). In contrast, few, if any, direct contacts were found between DRG neurites and mature oligodendrocytes (5+/-3 cells/fascicle, p<0.001). In fact, acellular spaces were found between neurites and surrounding mature oligodendrocytes in contrast to the lack of such spaces in OPC/DRG coculture (51.1+/-16.5 vs. 2.4+/-3.9 micrometer; p<0.001). Thus, OPCs expressing neither extracellular domain of Nogo-A nor MAG are significantly more permissive than mature oligodendrocytes expressing both. Grafting OPCs may thus represent a feasible strategy to foster CNS axonal regeneration.


The Journal of Neuroscience | 2016

Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation.

Nicholas J. Kuypers; Andrew N. Bankston; Russell M. Howard; Jason E. Beare; Scott R. Whittemore

Oligodendrocyte (OL) loss contributes to the functional deficits underlying diseases with a demyelinating component. Remyelination by oligodendrocyte progenitor cells (OPCs) can restore these deficits. To understand the role that microRNAs (miRNAs) play in remyelination, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-EGFP+ mice were treated with cuprizone, and OPCs were sorted from the corpus callosum. Microarray analysis revealed that Sfmbt2 family miRNAs decreased during cuprizone treatment. One particular Sfmbt2 miRNA, miR-297c-5p, increased during mouse OPC differentiation in vitro and during callosal development in vivo. When overexpressed in both mouse embryonic fibroblasts and rat OPCs (rOPCs), cell cycle analysis revealed that miR-297c-5p promoted G1/G0 arrest. Additionally, miR-297c-5p transduction increased the number of O1+ rOPCs during differentiation. Luciferase reporter assays confirmed that miR-297c-5p targets cyclin T2 (CCNT2), the regulatory subunit of positive transcription elongation factor b, a complex that inhibits OL maturation. Furthermore, CCNT2-specific knockdown promoted rOPC differentiation while not affecting cell cycle status. Together, these data support a dual role for miR-297c-5p as both a negative regulator of OPC proliferation and a positive regulator of OL maturation via its interaction with CCNT2. SIGNIFICANCE STATEMENT This work describes the role of oligodendrocyte progenitor cell (OPC) microRNAs (miRNAs) during remyelination and development in vivo and differentiation in vitro. This work highlights the importance of miRNAs to OPC biology and describes miR-297c-5p, a novel regulator of OPC function. In addition, we identified CCNT2 as a functional target, thus providing a mechanism by which miR-297c-5p imparts its effects on differentiation. These data are important, given our lack of understanding of OPC miRNA regulatory networks and their potential clinical value. Therefore, efforts to understand the role of miR-297c-5p in pathological conditions and its potential for facilitating repair may provide future therapeutic strategies to treat demyelination.


The Journal of Neuroscience | 2018

Blocking autophagy in oligodendrocytes limits functional recovery after spinal cord injury

Sujata Saraswat Ohri; Andrew N. Bankston; S. Ashley Mullins; Yu Liu; Kariena R. Andres; Jason E. Beare; Russell M. Howard; Darlene A. Burke; Amberly S. Riegler; Allison E. Smith; Michal Hetman; Scott R. Whittemore

Autophagy mechanisms are well documented in neurons after spinal cord injury (SCI), but the direct functional role of autophagy in oligodendrocyte (OL) survival in SCI pathogenesis remains unknown. Autophagy is an evolutionary conserved lysosomal-mediated catabolic pathway that ensures degradation of dysfunctional cellular components to maintain homeostasis in response to various forms of stress, including nutrient deprivation, hypoxia, reactive oxygen species, DNA damage, and endoplasmic reticulum (ER) stress. Using pharmacological gain and loss of function and genetic approaches, we investigated the contribution of autophagy in OL survival and its role in the pathogenesis of thoracic contusive SCI in female mice. Although upregulation of Atg5 (an essential autophagy gene) occurs after SCI, autophagy flux is impaired. Purified myelin fractions of contused 8 d post-SCI samples show enriched protein levels of LC3B, ATG5, and BECLIN 1. Data show that, while the nonspecific drugs rapamycin (activates autophagy) and spautin 1 (blocks autophagy) were pharmacologically active on autophagy in vivo, their administration did not alter locomotor recovery after SCI. To directly analyze the role of autophagy, transgenic mice with conditional deletion of Atg5 in OLs were generated. Analysis of hindlimb locomotion demonstrated a significant reduction in locomotor recovery after SCI that correlated with a greater loss in spared white matter. Immunohistochemical analysis demonstrated that deletion of Atg5 from OLs resulted in decreased autophagic flux and was detrimental to OL function after SCI. Thus, our study provides evidence that autophagy is an essential cytoprotective pathway operating in OLs and is required for hindlimb locomotor recovery after thoracic SCI. SIGNIFICANCE STATEMENT This study describes the role of autophagy in oligodendrocyte (OL) survival and pathogenesis after thoracic spinal cord injury (SCI). Modulation of autophagy with available nonselective drugs after thoracic SCI does not affect locomotor recovery despite being pharmacologically active in vivo, indicating significant off-target effects. Using transgenic mice with conditional deletion of Atg5 in OLs, this study definitively identifies autophagy as an essential homeostatic pathway that operates in OLs and exhibits a direct functional role in SCI pathogenesis and recovery. Therefore, this study emphasizes the need to discover novel autophagy-specific drugs that specifically modulate autophagy for further investigation for clinical translation to treat SCI and other CNS pathologies related to OL survival.


Investigative Ophthalmology & Visual Science | 2003

Enhanced Induction of RPE Lineage Markers in Pluripotent Neural Stem Cells Engrafted into the Adult Rat Subretinal Space

Volker Enzmann; Russell M. Howard; Yasuyuki Yamauchi; Scott R. Whittemore; Henry J. Kaplan

Collaboration


Dive into the Russell M. Howard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qilin Cao

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason E. Beare

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge