Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingqing Ji is active.

Publication


Featured researches published by Qingqing Ji.


ACS Nano | 2013

Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary

Yu Zhang; Yanfeng Zhang; Qingqing Ji; Jing Ju; Hongtao Yuan; Jianping Shi; Teng Gao; Donglin Ma; Mengxi Liu; Yubin Chen; Xiuju Song; Harold Y. Hwang; Yi Cui; Zhongfan Liu

Atomically thin tungsten disulfide (WS2), a structural analogue to MoS2, has attracted great interest due to its indirect-to-direct band-gap tunability, giant spin splitting, and valley-related physics. However, the batch production of layered WS2 is underdeveloped (as compared with that of MoS2) for exploring these fundamental issues and developing its applications. Here, using a low-pressure chemical vapor deposition method, we demonstrate that high-crystalline mono- and few-layer WS2 flakes and even complete layers can be synthesized on sapphire with the domain size exceeding 50 × 50 μm(2). Intriguingly, we show that, with adding minor H2 carrier gas, the shape of monolayer WS2 flakes can be tailored from jagged to straight edge triangles and still single crystalline. Meanwhile, some intersecting triangle shape flakes are concomitantly evolved from more than one nucleus to show a polycrystalline nature. It is interesting to see that, only through a mild sample oxidation process, the grain boundaries are easily recognizable by scanning electron microscopy due to its altered contrasts. Hereby, controlling the initial nucleation state is crucial for synthesizing large-scale single-crystalline flakes. We believe that this work would benefit the controlled growth of high-quality transition metal dichalcogenide, as well as in their future applications in nanoelectronics, optoelectronics, and solar energy conversions.


Nano Letters | 2013

Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence

Qingqing Ji; Yanfeng Zhang; Teng Gao; Yu Zhang; Donglin Ma; Mengxi Liu; Yubin Chen; Xiao-Fen Qiao; Ping-Heng Tan; Min Kan; Ji Feng; Qiang Sun; Zhongfan Liu

Molybdenum disulfide (MoS2) is back in the spotlight because of the indirect-to-direct bandgap tunability and valley related physics emerging in the monolayer regime. However, rigorous control of the monolayer thickness is still a huge challenge for commonly utilized physical exfoliation and chemical synthesis methods. Herein, we have successfully grown predominantly monolayer MoS2 on an inert and nearly lattice-matching mica substrate by using a low-pressure chemical vapor deposition method. The growth is proposed to be mediated by an epitaxial mechanism, and the epitaxial monolayer MoS2 is intrinsically strained on mica due to a small adlayer-substrate lattice mismatch (~2.7%). Photoluminescence (PL) measurements indicate strong single-exciton emission in as-grown MoS2 and room-temperature PL helicity (circular polarization ~0.35) on transferred samples, providing straightforward proof of the high quality of the prepared monolayer crystals. The homogeneously strained high-quality monolayer MoS2 prepared in this study could competitively be exploited for a variety of future applications.


ACS Nano | 2014

Controllable Growth and Transfer of Monolayer MoS2 on Au Foils and Its Potential Application in Hydrogen Evolution Reaction

Jianping Shi; Donglin Ma; Gao-Feng Han; Yu Zhang; Qingqing Ji; Teng Gao; Jingyu Sun; Xiuju Song; Cong Li; Yanshuo Zhang; Xing-You Lang; Yanfeng Zhang; Zhongfan Liu

Controllable synthesis of monolayer MoS2 is essential for fulfilling the application potentials of MoS2 in optoelectronics and valleytronics, etc. Herein, we report the scalable growth of high quality, domain size tunable (edge length from ∼ 200 nm to 50 μm), strictly monolayer MoS2 flakes or even complete films on commercially available Au foils, via low pressure chemical vapor deposition method. The as-grown MoS2 samples can be transferred onto arbitrary substrates like SiO2/Si and quartz with a perfect preservation of the crystal quality, thus probably facilitating its versatile applications. Of particular interest, the nanosized triangular MoS2 flakes on Au foils are proven to be excellent electrocatalysts for hydrogen evolution reaction, featured by a rather low Tafel slope (61 mV/decade) and a relative high exchange current density (38.1 μA/cm(2)). The excellent electron coupling between MoS2 and Au foils is considered to account for the extraordinary hydrogen evolution reaction activity. Our work reports the synthesis of monolayer MoS2 when introducing metal foils as substrates, and presents sound proof that monolayer MoS2 assembled on a well selected electrode can manifest a hydrogen evolution reaction property comparable with that of nanoparticles or few-layer MoS2 electrocatalysts.


Nature Communications | 2015

Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures

Teng Gao; Xiuju Song; Huiwen Du; Yufeng Nie; Yubin Chen; Qingqing Ji; Jingyu Sun; Yanlian Yang; Yanfeng Zhang; Zhongfan Liu

In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-triggered switching reaction. The perfect in-plane h-BN-G is characterized by scanning tunnelling microscopy (STM), showing atomically patched graphene and h-BN with typical zigzag edges. In contrast, the vertical alignment of G/h-BN is confirmed by unique lattice-mismatch-induced moiré patterns in high-resolution STM images, and two sets of aligned selected area electron diffraction spots, both suggesting a van der Waals epitaxial mechanism. The present work demonstrates the chemical designability of growth process for controlled synthesis of graphene and h-BN heterostructures. With practical scalability, high uniformity and quality, our approach will promote the development of graphene-based electronics and optoelectronics.


ACS Nano | 2014

Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications.

Yu Zhang; Qingqing Ji; Gao-Feng Han; Jing Ju; Jianping Shi; Donglin Ma; Jingyu Sun; Yanshuo Zhang; Minjie Li; Xing-You Lang; Yanfeng Zhang; Zhongfan Liu

Controllable synthesis of macroscopically uniform, high-quality monolayer MoS2 is crucial for harnessing its great potential in optoelectronics, electrocatalysis, and energy storage. To date, triangular MoS2 single crystals or their polycrystalline aggregates have been synthesized on insulating substrates of SiO2/Si, mica, sapphire, etc., via portable chemical vapor deposition methods. Herein, we report a controllable synthesis of dendritic, strictly monolayer MoS2 flakes possessing tunable degrees of fractal shape on a specific insulator, SrTiO3. Interestingly, the dendritic monolayer MoS2, characterized by abundant edges, can be transferred intact onto Au foil electrodes and serve as ideal electrocatalysts for hydrogen evolution reaction, reflected by a rather low Tafel slope of ∼73 mV/decade among CVD-grown two-dimensional MoS2 flakes. In addition, we reveal that centimeter-scale uniform, strictly monolayer MoS2 films consisting of relatively compact domains can also be obtained, offering insights into promising applications such as flexible energy conversion/harvesting and optoelectronics.


Nano Letters | 2015

Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS2 Domains on Sapphire

Qingqing Ji; Min Kan; Yu Zhang; Yao Guo; Donglin Ma; Jianping Shi; Qiang Sun; Qing Chen; Yanfeng Zhang; Zhongfan Liu

Monolayer MoS2 prepared by chemical vapor deposition (CVD) has a highly polycrystalline nature largely because of the coalescence of misoriented domains, which severely hinders its future applications. Identifying and even controlling the orientations of individual domains and understanding their merging behavior therefore hold fundamental significance. In this work, by using single-crystalline sapphire (0001) substrates, we designed the CVD growth of monolayer MoS2 triangles and their polycrystalline aggregates for such purposes. The obtained triangular MoS2 domains on sapphire were found to distributively align in two directions, which, as supported by density functional theory calculations, should be attributed to the relatively small fluctuations of the interface binding energy around the two primary orientations. Using dark-field transmission electron microscopy, we further imaged the grain boundaries of the aggregating domains and determined their prevalent armchair crystallographic orientations with respect to the adjacent MoS2 lattice. The coalescence of individual triangular flakes governed by unique kinetic processes is proposed for the polycrystal formation. These findings are expected to shed light on the controlled MoS2 growth toward predefined domain orientation and large domain size, thus enabling its versatile applications in next-generation nanoelectronics and optoelectronics.


Advanced Materials | 2015

All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS2/Graphene Heterostructures

Jianping Shi; Mengxi Liu; Jinxiu Wen; Xibiao Ren; Xiebo Zhou; Qingqing Ji; Donglin Ma; Yu Zhang; Chuanhong Jin; Huanjun Chen; Shaozhi Deng; Ningsheng Xu; Zhongfan Liu; Yanfeng Zhang

A facile all-chemical vapor deposition approach is designed, which allows both sequentially grown Gr and monolayer MoS2 in the same growth process, thus allowing the direct construction of MoS2 /Gr vertical heterostructures on Au foils. A weak n-doping effect and an intrinsic bandgap of MoS2 are obtained from MoS2 /Gr/Au via scanning tunneling microscopy and spectroscopy characterization. The exciton binding energy is accurately deduced by combining photoluminescence measurements.


Advanced Materials | 2015

Kinetic Nature of Grain Boundary Formation in As‐Grown MoS2 Monolayers

Jingxin Cheng; Tao Jiang; Qingqing Ji; Yu Zhang; Zhiming Li; Yuwei Shan; Yanfeng Zhang; Xingao Gong; Weitao Liu; Shiwei Wu

Grain boundaries in as-grown polycrystalline MoS2 monolayers are revealed by second-harmonic-generation microscopy. Through the anisotropic polarization pattern and phase interference at the grain boundary, grain edge termination and boundary types are identified. Statistical analysis on hundreds of grains shows that grain-boundary formation is driven by kinetics and can be nicely described by the edge attachment growth model.


Nano Research | 2015

Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes

Jingyu Sun; Yubin Chen; Xin Cai; Bangjun Ma; Zhaolong Chen; Manish Kr. Priydarshi; Ke Chen; Teng Gao; Xiuju Song; Qingqing Ji; Xuefeng Guo; Dechun Zou; Yanfeng Zhang; Zhongfan Liu

Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400–600 °C. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.


ACS Nano | 2015

Substrate Facet Effect on the Growth of Monolayer MoS2 on Au Foils

Jianping Shi; Xiaona Zhang; Donglin Ma; Jianbao Zhu; Yu Zhang; Zhenxi Guo; Yu Yao; Qingqing Ji; Xiuju Song; Yanshuo Zhang; Cong Li; Zhongfan Liu; Wenguang Zhu; Yanfeng Zhang

MoS2 on polycrystalline metal substrates emerges as an intriguing growth system compared to that on insulating substrates due to its direct application as an electrocatalyst in hydrogen evolution. However, the growth is still indistinct with regard to the effects of the inevitably evolved facets. Herein, we demonstrate for the first time that the crystallography of Au foil substrates can mediate a strong effect on the growth of monolayer MoS2, where large-domain single-crystal MoS2 triangles are more preferentially evolved on Au(100) and Au(110) facets than on Au(111) at relative high growth temperatures (>680 °C). Intriguingly, this substrate effect can be weakened at a low growth temperature (∼530 °C), reflected with uniform distributions of domain size and nucleation density among the different facets. The preferential nucleation and growth on some specific Au facets are explained from the facet-dependent binding energy of MoS2 according to density functional theory calculations. In brief, this work should shed light on the effect of substrate crystallography on the synthesis of monolayer MoS2, thus paving the way for achieving batch-produced, large-domain or domain size-tunable growth through an appropriate selection of the growth substrate.

Collaboration


Dive into the Qingqing Ji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge