Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuju Song is active.

Publication


Featured researches published by Xiuju Song.


ACS Nano | 2013

Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary

Yu Zhang; Yanfeng Zhang; Qingqing Ji; Jing Ju; Hongtao Yuan; Jianping Shi; Teng Gao; Donglin Ma; Mengxi Liu; Yubin Chen; Xiuju Song; Harold Y. Hwang; Yi Cui; Zhongfan Liu

Atomically thin tungsten disulfide (WS2), a structural analogue to MoS2, has attracted great interest due to its indirect-to-direct band-gap tunability, giant spin splitting, and valley-related physics. However, the batch production of layered WS2 is underdeveloped (as compared with that of MoS2) for exploring these fundamental issues and developing its applications. Here, using a low-pressure chemical vapor deposition method, we demonstrate that high-crystalline mono- and few-layer WS2 flakes and even complete layers can be synthesized on sapphire with the domain size exceeding 50 × 50 μm(2). Intriguingly, we show that, with adding minor H2 carrier gas, the shape of monolayer WS2 flakes can be tailored from jagged to straight edge triangles and still single crystalline. Meanwhile, some intersecting triangle shape flakes are concomitantly evolved from more than one nucleus to show a polycrystalline nature. It is interesting to see that, only through a mild sample oxidation process, the grain boundaries are easily recognizable by scanning electron microscopy due to its altered contrasts. Hereby, controlling the initial nucleation state is crucial for synthesizing large-scale single-crystalline flakes. We believe that this work would benefit the controlled growth of high-quality transition metal dichalcogenide, as well as in their future applications in nanoelectronics, optoelectronics, and solar energy conversions.


ACS Nano | 2014

Controllable Growth and Transfer of Monolayer MoS2 on Au Foils and Its Potential Application in Hydrogen Evolution Reaction

Jianping Shi; Donglin Ma; Gao-Feng Han; Yu Zhang; Qingqing Ji; Teng Gao; Jingyu Sun; Xiuju Song; Cong Li; Yanshuo Zhang; Xing-You Lang; Yanfeng Zhang; Zhongfan Liu

Controllable synthesis of monolayer MoS2 is essential for fulfilling the application potentials of MoS2 in optoelectronics and valleytronics, etc. Herein, we report the scalable growth of high quality, domain size tunable (edge length from ∼ 200 nm to 50 μm), strictly monolayer MoS2 flakes or even complete films on commercially available Au foils, via low pressure chemical vapor deposition method. The as-grown MoS2 samples can be transferred onto arbitrary substrates like SiO2/Si and quartz with a perfect preservation of the crystal quality, thus probably facilitating its versatile applications. Of particular interest, the nanosized triangular MoS2 flakes on Au foils are proven to be excellent electrocatalysts for hydrogen evolution reaction, featured by a rather low Tafel slope (61 mV/decade) and a relative high exchange current density (38.1 μA/cm(2)). The excellent electron coupling between MoS2 and Au foils is considered to account for the extraordinary hydrogen evolution reaction activity. Our work reports the synthesis of monolayer MoS2 when introducing metal foils as substrates, and presents sound proof that monolayer MoS2 assembled on a well selected electrode can manifest a hydrogen evolution reaction property comparable with that of nanoparticles or few-layer MoS2 electrocatalysts.


Nature Communications | 2015

Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures

Teng Gao; Xiuju Song; Huiwen Du; Yufeng Nie; Yubin Chen; Qingqing Ji; Jingyu Sun; Yanlian Yang; Yanfeng Zhang; Zhongfan Liu

In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-triggered switching reaction. The perfect in-plane h-BN-G is characterized by scanning tunnelling microscopy (STM), showing atomically patched graphene and h-BN with typical zigzag edges. In contrast, the vertical alignment of G/h-BN is confirmed by unique lattice-mismatch-induced moiré patterns in high-resolution STM images, and two sets of aligned selected area electron diffraction spots, both suggesting a van der Waals epitaxial mechanism. The present work demonstrates the chemical designability of growth process for controlled synthesis of graphene and h-BN heterostructures. With practical scalability, high uniformity and quality, our approach will promote the development of graphene-based electronics and optoelectronics.


Nano Letters | 2015

Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications

Jingyu Sun; Yubin Chen; Manish Kr. Priydarshi; Zhang Chen; Alicja Bachmatiuk; Zhiyu Zou; Zhaolong Chen; Xiuju Song; Yanfeng Gao; Mark H. Rümmeli; Yanfeng Zhang; Zhongfan Liu

Direct growth of graphene on traditional glasses is of great importance for various daily life applications. We report herein the catalyst-free atmospheric-pressure chemical vapor deposition approach to directly synthesizing large-area, uniform graphene films on solid glasses. The optical transparency and sheet resistance of such kinds of graphene glasses can be readily adjusted together with the experimentally tunable layer thickness of graphene. More significantly, these graphene glasses find a broad range of real applications by enabling the low-cost construction of heating devices, transparent electrodes, photocatalytic plates, and smart windows. With a practical scalability, the present work will stimulate various applications of transparent, electrically and thermally conductive graphene glasses in real-life scenarios.


Journal of the American Chemical Society | 2014

Direct Growth of High-Quality Graphene on High-κ Dielectric SrTiO3 Substrates

Jingyu Sun; Teng Gao; Xiuju Song; Yanfei Zhao; Yuanwei Lin; Huichao Wang; Donglin Ma; Yubin Chen; Wenfeng Xiang; Jian Wang; Yanfeng Zhang; Zhongfan Liu

High-quality monolayer graphene was synthesized on high-κ dielectric single crystal SrTiO3 (STO) substrates by a facile metal-catalyst-free chemical vapor deposition process. The as-grown graphene sample was suitable for fabricating a high performance field-effect transistor (FET), followed by a far lower operation voltage compared to that of a SiO2-gated FET and carrier motilities of approximately 870-1050 cm(2)·V(-1)·s(-1) in air at rt. The directly grown high-quality graphene on STO makes it a perfect candidate for designing transfer-free, energy-saving, and batch production of FET arrays.


Advanced Materials | 2015

Growing uniform graphene disks and films on molten glass for heating devices and cell culture

Yubin Chen; Jingyu Sun; Junfeng Gao; Feng Du; Qi Han; Yufeng Nie; Zhaolong Chen; Alicja Bachmatiuk; Manish Kr. Priydarshi; Donglin Ma; Xiuju Song; Xiaosong Wu; Mark H. Rümmeli; Feng Ding; Yanfeng Zhang; Zhongfan Liu

The direct growth of uniform graphene disks and their continuous film is achieved by exploiting the molten state of glass. The use of molten glass enables highly uniform nucleation and an enhanced growth rate (tenfold) of graphene, as compared to those scenarios on commonly used insulating solids. The obtained graphene glasses show promising application potentials in daily-life scenarios such as smart heating devices and biocompatible cell-culture mediums.


Nano Research | 2015

Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation

Xiuju Song; Junfeng Gao; Yufeng Nie; Teng Gao; Jingyu Sun; Donglin Ma; Qiucheng Li; Yubin Chen; Chuanhong Jin; Alicja Bachmatiuk; Mark H. Rümmeli; Feng Ding; Yanfeng Zhang; Zhongfan Liu

Chemical vapor deposition (CVD) synthesis of large-domain hexagonal boron nitride (h-BN) with a uniform thickness is very challenging, mainly due to the extremely high nucleation density of this material. Herein, we report the successful growth of wafer-scale, high-quality h-BN monolayer films that have large single-crystalline domain sizes, up to ~72 µm in edge length, prepared using a folded Cu-foil enclosure. The highly confined growth space and the smooth Cu surface inside the enclosure effectively reduced the precursor feeding rate together and induced a drastic decrease in the nucleation density. The orientation of the as-grown h-BN monolayer was found to be strongly correlated to the crystallographic orientation of the Cu substrate: the Cu (111) face being the best substrate for growing aligned h-BN domains and even single-crystalline monolayers. This is consistent with our density functional theory calculations. The present study offers a practical pathway for growing high-quality h-BN films by deepening our fundamental understanding of the process of their growth by CVD.


Nano Research | 2015

Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes

Jingyu Sun; Yubin Chen; Xin Cai; Bangjun Ma; Zhaolong Chen; Manish Kr. Priydarshi; Ke Chen; Teng Gao; Xiuju Song; Qingqing Ji; Xuefeng Guo; Dechun Zou; Yanfeng Zhang; Zhongfan Liu

Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400–600 °C. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.


ACS Nano | 2015

Substrate Facet Effect on the Growth of Monolayer MoS2 on Au Foils

Jianping Shi; Xiaona Zhang; Donglin Ma; Jianbao Zhu; Yu Zhang; Zhenxi Guo; Yu Yao; Qingqing Ji; Xiuju Song; Yanshuo Zhang; Cong Li; Zhongfan Liu; Wenguang Zhu; Yanfeng Zhang

MoS2 on polycrystalline metal substrates emerges as an intriguing growth system compared to that on insulating substrates due to its direct application as an electrocatalyst in hydrogen evolution. However, the growth is still indistinct with regard to the effects of the inevitably evolved facets. Herein, we demonstrate for the first time that the crystallography of Au foil substrates can mediate a strong effect on the growth of monolayer MoS2, where large-domain single-crystal MoS2 triangles are more preferentially evolved on Au(100) and Au(110) facets than on Au(111) at relative high growth temperatures (>680 °C). Intriguingly, this substrate effect can be weakened at a low growth temperature (∼530 °C), reflected with uniform distributions of domain size and nucleation density among the different facets. The preferential nucleation and growth on some specific Au facets are explained from the facet-dependent binding energy of MoS2 according to density functional theory calculations. In brief, this work should shed light on the effect of substrate crystallography on the synthesis of monolayer MoS2, thus paving the way for achieving batch-produced, large-domain or domain size-tunable growth through an appropriate selection of the growth substrate.


Nano Research | 2015

A universal etching-free transfer of MoS2 films for applications in photodetectors

Donglin Ma; Jianping Shi; Qingqing Ji; Ke Chen; Jianbo Yin; Yuanwei Lin; Yu Zhang; Mengxi Liu; Qingliang Feng; Xiuju Song; Xuefeng Guo; Jin Zhang; Yanfeng Zhang; Zhongfan Liu

Transferring MoS2 films from growth substrates onto target substrates is a critical issue for their practical applications. Moreover, it remains a great challenge to avoid sample degradation and substrate destruction, because the current transfer method inevitably employs a wet chemical etching process. We developed an etching-free transfer method for transferring MoS2 films onto arbitrary substrates by using ultrasonication. Briefly, the collapse of ultrasonication-generated microbubbles at the interface between polymer-coated MoS2 film and substrates induce sufficient force to delaminate the MoS2 films. Using this method, the MoS2 films can be transferred from all substrates (silica, mica, strontium titanate, and sapphire) and retains the original sample morphology and quality. This method guarantees a simple transfer process and allows the reuse of growth substrates, without involving any hazardous etchants. The etching-free transfer method is likely to promote broad applications of MoS2 in photodetectors.

Collaboration


Dive into the Xiuju Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge