Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinlong Zhu is active.

Publication


Featured researches published by Qinlong Zhu.


Molecular Plant | 2015

A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants

Xingliang Ma; Qunyu Zhang; Qinlong Zhu; Wei Liu; Yan Chen; Rong Qiu; Bin Wang; Zhongfang Yang; Heying Li; Yuru Lin; Yongyao Xie; Rongxin Shen; Shuifu Chen; Zhi Wang; Yuanling Chen; Jingxin Guo; Letian Chen; Xiucai Zhao; Zhicheng Dong; Yao-Guang Liu

CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.


Molecular Plant | 2014

XA23 Is an Executor R Protein and Confers Broad-Spectrum Disease Resistance in Rice

Chunlian Wang; Xiaoping Zhang; Ying-Lun Fan; Ying Gao; Qinlong Zhu; Chongke Zheng; Tengfei Qin; Yanqiang Li; Jinying Che; Mingwei Zhang; Bing Yang; Yao-Guang Liu; Kaijun Zhao

The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.


Molecular Plant | 2015

Rapid Decoding of Sequence-Specific Nuclease-Induced Heterozygous and Biallelic Mutations by Direct Sequencing of PCR Products

Xingliang Ma; Letian Chen; Qinlong Zhu; Yuanling Chen; Yao-Guang Liu

The recent development of sequence-specific nuclease systems, i.e., TALENs and CRISPR/Cas9, has made genomic targeting easier in many organisms including plants (Li et al., 2012; Cong et al., 2013; Joung and Sander, 2013; Li, et al., 2013; Shan et al., 2013; Liang et al., 2014; Zhang et al., 2014). Mutations induced by CRISPR/Cas9 usually occur around the cleavage sites at three bases upstream of the protospacer-adjacent motif (PAM), producing insertion and deletion of nucleotides. For diploid organisms, such targeted mutations may happen in one or both homologous chromosomes.


Gene | 2014

Robust multi-type plasmid modifications based on isothermal in vitro recombination

Qinlong Zhu; Zhongfang Yang; Qunyu Zhang; Letian Chen; Yao-Guang Liu

A robust strategy for multi-type plasmid modifications is developed based on the isothermal in vitro recombination technology, by which any combination of the sequence modifications can be efficiently achieved in plasmids at any desired position in a seamless manner. As an example, we showed that a plasmid modification with insertion of a GFP gene, deletion of a 623-bp fragment, and substitution of an ampicillin resistance gene by a kanamycin resistance gene was accomplished simultaneously by this method. Therefore, the isothermal in vitro recombination-based multi-type plasmid modification strategy is a useful approach for broad application prospects in molecular biology studies.


Comparative and Functional Genomics | 2012

Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes

Shunzhao Sui; Jianghui Luo; Jing Ma; Qinlong Zhu; Xinghua Lei; Mingyang Li

A complementary DNA library was constructed from the flowers of Chimonanthus praecox, an ornamental perennial shrub blossoming in winter in China. Eight hundred sixty-seven high-quality expressed sequence tag sequences with an average read length of 673.8 bp were acquired. A nonredundant set of 479 unigenes, including 94 contigs and 385 singletons, was identified after the expressed sequence tags were clustered and assembled. BLAST analysis against the nonredundant protein database and nonredundant nucleotide database revealed that 405 unigenes shared significant homology with known genes. The homologous unigenes were categorized according to Gene Ontology hierarchies (biological, cellular, and molecular). By BLAST analysis and Gene Ontology annotation, 95 unigenes involved in stress and defense and 19 unigenes related to floral development were identified based on existing knowledge. Twelve genes, of which 9 were annotated as “cold response,” were examined by real-time RT-PCR to understand the changes in expression patterns under cold stress and to validate the findings. Fourteen genes, including 11 genes related to floral development, were also detected by real-time RT-PCR to validate the expression patterns in the blooming process and in different tissues. This study provides a useful basis for the genomic analysis of C. praecox.


Nature Communications | 2017

Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice

Rongxin Shen; Lan Wang; Xupeng Liu; Jiang Wu; Weiwei Jin; Xiucai Zhao; Xianrong Xie; Qinlong Zhu; Huiwu Tang; Qing Li; Letian Chen; Yao-Guang Liu

Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica–indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.A reproductive barrier between japonica and indica rice subspecies hinders hybrid breeding. Here, the authors reveal that structural and copy number variations of a pollen-essential gene, which encodes a DUF1618-domain protein, result in allelic suppression and subsequently cause hybrid male sterility.


Molecular Plant | 2017

CRISPR-GE: A Convenient Software Toolkit for CRISPR-Based Genome Editing

Xianrong Xie; Xingliang Ma; Qinlong Zhu; Dongchang Zeng; Gousi Li; Yao-Guang Liu

Use of the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (Cas9) and Cpf1 systems in plants (Ma et al., 2016; Wang et al., 2017) involves many steps, including the selection of appropriate specific target site(s) that should have no highly homologous sequences as the potential off-target sites in the genome, the design and synthesis of oligonucleotides involving the target sequences, the preparation of expression cassette(s) for the target single guide RNAs (sgRNAs) that provide target sequence specificity, the construction of plant-transformation/expression vector(s), and the transformation of plants, followed by the detection and determination of the targeted mutations in the transgenic plants.


PLOS ONE | 2015

Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco

Qinlong Zhu; Shunzhao Sui; Xinghua Lei; Zhongfang Yang; Kun Lu; Guangde Liu; Yao-Guang Liu; Mingyang Li

Proanthocyanidins (PAs) play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides), to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1) and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR) and late anthocyanin structural genes (NtDFR and NtANS), but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.


Frontiers in Plant Science | 2017

Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus

Kun Lu; Liu Peng; Chao Zhang; Junhua Lu; Bo Yang; Zhongchun Xiao; Ying Liang; Xingfu Xu; Cunmin Qu; Kai Zhang; Liezhao Liu; Qinlong Zhu; Minglian Fu; Xiaoyan Yuan; Jiana Li

Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP), seed number per pod (SPP), thousand seed weight, main inflorescence yield (MIY), and branch yield], using data from 520 diverse B. napus accessions from two different yield environments. In total, we detected 128 significant single nucleotide polymorphisms (SNPs), 93 of which were revealed as novel by integrative analysis. A combination of GWAS and transcriptome sequencing on 21 haplotype blocks from samples pooled by four extremely high-yielding or low-yielding accessions revealed the differential expression of 14 crucial candiate genes (such as Bna.MYB83, Bna.SPL5, and Bna.ROP3) associated with multiple traits or containing multiple SNPs associated with the same trait. Functional annotation and expression pattern analyses further demonstrated that these 14 candiate genes might be important in developmental processes and biomass accumulation, thus affecting the yield establishment of B. napus. These results provide valuable information for understanding the genetic mechanisms underlying the establishment of high yield in B. napus, and lay the foundation for developing high-yielding B. napus varieties.


Molecules | 2015

Isolation and Functional Characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1) from Coleus (Solenostemon scutellarioides (L.) Codd)

Qinlong Zhu; Xianrong Xie; Haoxiang Lin; Shunzhao Sui; Rongxin Shen; Zhongfang Yang; Kun Lu; Mingyang Li; Yao-Guang Liu

Phenylalanine ammonia-lyase (PAL) is the first enzyme involved in the phenylpropanoid pathway and plays important roles in the secondary metabolisms, development and defense of plants. To study the molecular function of PAL in anthocyanin synthesis of Coleus (Solenostemon scutellarioides (L.) Codd), a Coleus PAL gene designated as SsPAL1 was cloned and characterized using a degenerate oligonucleotide primer PCR and RACE method. The full-length SsPAL1 was 2450 bp in size and consisted of one intron and two exons encoding a polypeptide of 711 amino acids. The deduced SsPAL1 protein showed high identities and structural similarities with other functional plant PAL proteins. A series of putative cis-acting elements involved in transcriptional regulation, light and stress responsiveness were found in the upstream regulatory sequence of SsPAL1. Transcription pattern analysis indicated that SsPAL1 was constitutively expressed in all tissues examined and was enhanced by light and different abiotic factors. The recombinant SsPAL1 protein exhibited high PAL activity, at optimal conditions of 60 °C and pH 8.2. Although the levels of total PAL activity and total anthocyanin concentration have a similar variation trend in different Coleus cultivars, there was no significant correlation between them (r = 0.7529, p > 0.1), suggesting that PAL was not the rate-limiting enzyme for the downstream anthocyanin biosynthetic branch in Coleus. This study enables us to further understand the role of SsPAL1 in the phenylpropanoid (flavonoids, anthocyanins) biosynthesis in Coleus at the molecular level.

Collaboration


Dive into the Qinlong Zhu's collaboration.

Top Co-Authors

Avatar

Yao-Guang Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Letian Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qunyu Zhang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rongxin Shen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xingliang Ma

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuanling Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhongfang Yang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dongchang Zeng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xianrong Xie

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiucai Zhao

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge