Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qunyu Zhang is active.

Publication


Featured researches published by Qunyu Zhang.


The Plant Cell | 2006

Cytoplasmic Male Sterility of Rice with Boro II Cytoplasm Is Caused by a Cytotoxic Peptide and Is Restored by Two Related PPR Motif Genes via Distinct Modes of mRNA Silencing

Zhonghua Wang; Yanjiao Zou; Xiaoyu Li; Qunyu Zhang; Letian Chen; Hao Wu; Dihua Su; Yuanling Chen; Jingxin Guo; Da Luo; Yunming Long; Yang Zhong; Yao-Guang Liu

Cytoplasmic male sterility (CMS) and nucleus-controlled fertility restoration are widespread plant reproductive features that provide useful tools to exploit heterosis in crops. However, the molecular mechanism underlying this kind of cytoplasmic–nuclear interaction remains unclear. Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide. Expression of orf79 in CMS lines and transgenic rice plants caused gametophytic male sterility. Immunoblot analysis showed that the ORF79 protein accumulates specifically in microspores. Two fertility restorer genes, Rf1a and Rf1b, were identified at the classical locus Rf-1 as members of a multigene cluster that encode pentatricopeptide repeat proteins. RF1A and RF1B are both targeted to mitochondria and can restore male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation (RF1B) of dicistronic B-atp6/orf79 mRNA. In the presence of both restorers, RF1A was epistatic over RF1B in the mRNA processing. We have also shown that RF1A plays an additional role in promoting the editing of atp6 mRNAs, independent of its cleavage function.


Molecular Plant | 2015

A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants

Xingliang Ma; Qunyu Zhang; Qinlong Zhu; Wei Liu; Yan Chen; Rong Qiu; Bin Wang; Zhongfang Yang; Heying Li; Yuru Lin; Yongyao Xie; Rongxin Shen; Shuifu Chen; Zhi Wang; Yuanling Chen; Jingxin Guo; Letian Chen; Xiucai Zhao; Zhicheng Dong; Yao-Guang Liu

CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes

Yunming Long; Lifeng Zhao; Baixiao Niu; Jing Su; Hao Wu; Yuanling Chen; Qunyu Zhang; Jingxin Guo; Chuxiong Zhuang; Mantong Mei; Jixing Xia; Lan Wang; Haibin Wu; Yao-Guang Liu

Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM+SaF+, whereas all japonica cultivars have SaM−SaF− that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM−. This allele-specific gamete elimination results from a selective interaction of SaF+ with SaM−, a truncated protein, but not with SaM+ because of the presence of an inhibitory domain, although SaM+ is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.


Molecular Plant | 2014

The Rice Restorer Rf4 for Wild-Abortive Cytoplasmic Male Sterility Encodes a Mitochondrial-Localized PPR Protein that Functions in Reduction of WA352 Transcripts

Huiwu Tang; Dangping Luo; Degui Zhou; Qunyu Zhang; Dongsheng Tian; Xingmei Zheng; Letian Chen; Yao-Guang Liu

Supplemental Figures, Tables, and AppendicesxDownload (.46 MB ) Supplemental Figures, Tables, and Appendices


Gene | 2002

Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning.

Yao-Guang Liu; Hongmei Liu; Letian Chen; Weihua Qiu; Qunyu Zhang; Hao Wu; Chunyi Yang; Jing Su; Zhonghua Wang; Dongsheng Tian; Mantong Mei

The transformation-competent artificial chromosome vector (TAC) system has been shown to be very useful for efficient gene isolation in Arabidopsis thaliana (Proc. Natl. Acad. Sci. USA 96 (1998) 6535). To adapt the vector system for gene isolation in crops, two new TAC vectors and rice genomic libraries were developed. The new vectors pYLTAC17 and pYLTAC27 use the Bar gene and Hpt gene driven by the rice Act1 promoter as the plant selectable markers, respectively, and are suitable for transformation of rice and other grasses. Two representative genomic libraries (I and II) of an Indica rice variety Minghui63, a fertility restorer line for hybrid rice, were constructed with pYLTAC17 using different size classes of partially digested DNA fragments. Library I and library II consisted of 34,560 and 1.2 x 10(5) clones, with average insert sizes of approximately 77 and 39 kb, respectively. The genome coverage of the libraries I and II was estimated to be about 5 and 11 haploid genome equivalents, respectively. Clones of the library I were stored individually in ninety 384-well plates, and those of the library II were collected as bulked pools each containing 30-50 clones and stored in eight 384-well plates. A number of probes were used to hybridize high-density colony filters of the library I prepared by an improved replicating method and each detected 2-9 positive clones. A method for rapid screening of the library II by pooled colony hybridization was developed. A TAC clone having an 80 kb rice DNA insert was successfully transferred into rice genome via Agrobacterium-mediated transformation. The new vectors and the genomic libraries should be useful for gene cloning and genetic engineering in rice and other crops.


Gene | 2014

Robust multi-type plasmid modifications based on isothermal in vitro recombination

Qinlong Zhu; Zhongfang Yang; Qunyu Zhang; Letian Chen; Yao-Guang Liu

A robust strategy for multi-type plasmid modifications is developed based on the isothermal in vitro recombination technology, by which any combination of the sequence modifications can be efficiently achieved in plasmids at any desired position in a seamless manner. As an example, we showed that a plasmid modification with insertion of a GFP gene, deletion of a 623-bp fragment, and substitution of an ampicillin resistance gene by a kanamycin resistance gene was accomplished simultaneously by this method. Therefore, the isothermal in vitro recombination-based multi-type plasmid modification strategy is a useful approach for broad application prospects in molecular biology studies.


Biologia Plantarum | 2011

Characterization and expression analysis of the SNF2 family genes in response to phytohormones and abiotic stresses in rice

X. Y. Li; C. Wang; P. P. Nie; X. W. Lu; M. Wang; W. Liu; J. Yao; Yao-Guang Liu; Qunyu Zhang

The function of SNF2 ATPases, the major catalytic subunits of chromatin remodeling complexes, in plants is not sufficiently understood. Here we identified 39 putative SNF2 genes of rice (Oryza sativa L.) by homology analyses and analyzed the expression profiles of eight of them in response to phytohormones and abiotic stresses. Our results indicated that expression of the SNF2 genes was affected by auxin, gibberellin, cytokinin, abscisic acid, ethylene, and some abiotic stresses such as heat, chilling, darkness, drought and salinity. It suggests that, like Arabidopsis SNF2s, rice SNF2 proteins may function in phytohormone signaling pathways and/or be associated with the resistance to abiotic stresses, but in distinct manners from their Arabidopsis orthologs. Some SNF2 proteins in rice may be involved in cross-talk of the signaling pathways between phytohormones and abiotic stresses.


EMBO Reports | 2015

BRHIS1 suppresses rice innate immunity through binding to monoubiquitinated H2A and H2B variants.

Xiaoyu Li; Yanxiang Jiang; Zhicheng Ji; Yao-Guang Liu; Qunyu Zhang

In the absence of pathogen attack, organisms usually suppress immune responses to reduce the negative effects of disease resistance. Monoubiquitination of histone variants at specific gene loci is crucial for gene expression, but its involvement in the regulation of plant immunity remains unclear. Here, we show that a rice SWI/SNF2 ATPase gene BRHIS1 is downregulated in response to the rice blast fungal pathogen or to the defense‐priming‐inducing compound BIT (1,2‐benzisothiazol‐3(2h)‐one,1, 1‐dioxide). The BRHIS1‐containing complex represses the expression of some disease defense‐related genes, including the pathogenesis‐related gene OsPBZc and the leucine‐rich‐repeat (LRR) receptor‐like protein kinase gene OsSIRK1. This is achieved through BRHIS1 recruitment to the promoter regions of target genes through specific interaction with monoubiquitinated histone variants H2B.7 and H2A.Xa/H2A.Xb/H2A.3, in the absence of pathogen attack or BIT treatment. Our results show that rice disease defense genes are initially organized in an expression‐ready state by specific monoubiquitination of H2A and H2B variants deposited on their promoter regions, but are kept suppressed by the BRHIS1 complex, facilitating the prompt initiation of innate immune responses in response to infection through the stringent regulation of BRHIS1.


Journal of Genetics and Genomics | 2014

Characterization and Molecular Mapping of a New Virescent Mutant in Rice

Qunyu Zhang; Dexing Xue; Xiaoyu Li; Yunming Long; Xianjie Zeng; Yao-Guang Liu

Plant leaves play a significant role in photosynthesis.Normal chloroplast development is critical for plant growth and yield performance.Defect of the chlorophyll in chloroplasts may cause abnormal leaf colors,such as yellow,white,or stripe.Chloroplasts have their own genomes encoding for about 100 genes that are essential for plastid protein synthesis and photosynthesis(Kanno and Hirai,1993;Sato


Advances in Protein Chemistry | 2017

Chromatin Remodeling and Plant Immunity

W. Chen; Qinlong Zhu; Yingliang Liu; Qunyu Zhang

Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

Collaboration


Dive into the Qunyu Zhang's collaboration.

Top Co-Authors

Avatar

Yao-Guang Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Letian Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuanling Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyu Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hao Wu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jingxin Guo

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qinlong Zhu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Heying Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiucai Zhao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dangping Luo

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge