Yuanling Chen
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuanling Chen.
The Plant Cell | 2006
Zhonghua Wang; Yanjiao Zou; Xiaoyu Li; Qunyu Zhang; Letian Chen; Hao Wu; Dihua Su; Yuanling Chen; Jingxin Guo; Da Luo; Yunming Long; Yang Zhong; Yao-Guang Liu
Cytoplasmic male sterility (CMS) and nucleus-controlled fertility restoration are widespread plant reproductive features that provide useful tools to exploit heterosis in crops. However, the molecular mechanism underlying this kind of cytoplasmic–nuclear interaction remains unclear. Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide. Expression of orf79 in CMS lines and transgenic rice plants caused gametophytic male sterility. Immunoblot analysis showed that the ORF79 protein accumulates specifically in microspores. Two fertility restorer genes, Rf1a and Rf1b, were identified at the classical locus Rf-1 as members of a multigene cluster that encode pentatricopeptide repeat proteins. RF1A and RF1B are both targeted to mitochondria and can restore male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation (RF1B) of dicistronic B-atp6/orf79 mRNA. In the presence of both restorers, RF1A was epistatic over RF1B in the mRNA processing. We have also shown that RF1A plays an additional role in promoting the editing of atp6 mRNAs, independent of its cleavage function.
Molecular Plant | 2015
Xingliang Ma; Qunyu Zhang; Qinlong Zhu; Wei Liu; Yan Chen; Rong Qiu; Bin Wang; Zhongfang Yang; Heying Li; Yuru Lin; Yongyao Xie; Rongxin Shen; Shuifu Chen; Zhi Wang; Yuanling Chen; Jingxin Guo; Letian Chen; Xiucai Zhao; Zhicheng Dong; Yao-Guang Liu
CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Yunming Long; Lifeng Zhao; Baixiao Niu; Jing Su; Hao Wu; Yuanling Chen; Qunyu Zhang; Jingxin Guo; Chuxiong Zhuang; Mantong Mei; Jixing Xia; Lan Wang; Haibin Wu; Yao-Guang Liu
Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM+SaF+, whereas all japonica cultivars have SaM−SaF− that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM−. This allele-specific gamete elimination results from a selective interaction of SaF+ with SaM−, a truncated protein, but not with SaM+ because of the presence of an inhibitory domain, although SaM+ is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.
Molecular Plant | 2015
Xingliang Ma; Letian Chen; Qinlong Zhu; Yuanling Chen; Yao-Guang Liu
The recent development of sequence-specific nuclease systems, i.e., TALENs and CRISPR/Cas9, has made genomic targeting easier in many organisms including plants (Li et al., 2012; Cong et al., 2013; Joung and Sander, 2013; Li, et al., 2013; Shan et al., 2013; Liang et al., 2014; Zhang et al., 2014). Mutations induced by CRISPR/Cas9 usually occur around the cleavage sites at three bases upstream of the protospacer-adjacent motif (PAM), producing insertion and deletion of nucleotides. For diploid organisms, such targeted mutations may happen in one or both homologous chromosomes.
Molecular Plant | 2013
Chonghui Ji; Heying Li; Libin Chen; Min Xie; Fengping Wang; Yuanling Chen; Yao-Guang Liu
Dear Editor, Male reproductive development is an essential biological process for flowering plants and crucial for crop seed production.Formation of the male reproductive organ,the anther,involves a number of developmental events,including stamen meristem specification,generation of sporogenous cells and their differentiation into microspore mother cells (MMCs),meiosis,microspore (pollen) maturation,and pollination (Ma,2005).The formation of microspores and their development into mature pollen grains require cooperative interactions between gametophytic (microspores) and sporophytic (anther wall) cells,with the innermost cell layer,the tapetum,playing the most crucial role (Ma,2005).Tapetal cells undergo degeneration by programmed cell death (PCD).
Theoretical and Applied Genetics | 2014
Riqing Li; Jixing Xia; Yiwei Xu; Xiucai Zhao; Yao-Guang Liu; Yuanling Chen
Abstract Plant height is an important agronomic trait for crop architecture and yield. Most known factors determining plant height function in gibberellin or brassinosteroid biosynthesis or signal transduction. Here, we report a japonica rice (Oryza sativa ssp. japonica) dominant dwarf mutant, Photoperiod-sensitive dwarf 1 (Psd1). The Psd1 mutant showed impaired cell division and elongation, and a severe dwarf phenotype under long-day conditions, but nearly normal growth in short-day. The plant height of Psd1 mutant could not be rescued by gibberellin or brassinosteroid treatment. Genetic analysis with R1 and F2 populations determined that Psd1 phenotype was controlled by a single dominant locus. Linkage analysis with 101 tall F2 plants grown in a long-day season, which were derived from a cross between Psd1 and an indica cultivar, located Psd1 locus on chromosome 1. Further fine-mapping with 1017 tall F2 plants determined this locus on an 11.5-kb region. Sequencing analysis of this region detected a mutation site in a gene encoding a putative lipid transfer protein; the mutation produces a truncated C-terminus of the protein. This study establishes the genetic foundation for understanding the molecular mechanisms regulating plant cell division and elongation mediated by interaction between genetic and environmental factors.
Cell Research | 2017
Huiwu Tang; Xingmei Zheng; Chuliang Li; Xianrong Xie; Yuanling Chen; Letian Chen; Xiucai Zhao; Huiqi Zheng; Jiajian Zhou; Shan Ye; Jingxin Guo; Yao-Guang Liu
New gene origination is a major source of genomic innovations that confer phenotypic changes and biological diversity. Generation of new mitochondrial genes in plants may cause cytoplasmic male sterility (CMS), which can promote outcrossing and increase fitness. However, how mitochondrial genes originate and evolve in structure and function remains unclear. The rice Wild Abortive type of CMS is conferred by the mitochondrial gene WA352c (previously named WA352) and has been widely exploited in hybrid rice breeding. Here, we reconstruct the evolutionary trajectory of WA352c by the identification and analyses of 11 mitochondrial genomic recombinant structures related to WA352c in wild and cultivated rice. We deduce that these structures arose through multiple rearrangements among conserved mitochondrial sequences in the mitochondrial genome of the wild rice Oryza rufipogon, coupled with substoichiometric shifting and sequence variation. We identify two expressed but nonfunctional protogenes among these structures, and show that they could evolve into functional CMS genes via sequence variations that could relieve the self-inhibitory potential of the proteins. These sequence changes would endow the proteins the ability to interact with the nucleus-encoded mitochondrial protein COX11, resulting in premature programmed cell death in the anther tapetum and male sterility. Furthermore, we show that the sequences that encode the COX11-interaction domains in these WA352c-related genes have experienced purifying selection during evolution. We propose a model for the formation and evolution of new CMS genes via a “multi-recombination/protogene formation/functionalization” mechanism involving gradual variations in the structure, sequence, copy number, and function.
Theoretical and Applied Genetics | 2013
Haibin Wu; Bin Wang; Yuanling Chen; Yao-Guang Liu; Letian Chen
Premature senescence can limit crop productivity by limiting the growth phase. In the present study, a spontaneous premature senescence mutant was identified in rice (Oryza sativa L.). Genetic analysis revealed that the premature senescence phenotype was controlled by a recessive mutation, which we named Oryza sativa premature senescence1 (ospse1). The ospse1 mutants showed premature leaf senescence from the booting stage and exhibited more severe symptoms during reproductive and ripening stages. Key yield-related agronomic traits such as 1,000-grain weight and seed-setting rate, but not panicle grain number, were significantly reduced in ospse1 plants. Chlorophyll content, net photosynthetic rate, and transpiration rate of ospse1 flag leaves were similar to the wild-type plants in vegetative stages, but these parameters decreased steeply in the mutant after the heading stage. Consistent with this, the senescence-associated genes OsNYC1 and OsSgr were up-regulated in ospse1 mutant during premature leaf senescence. The ospse1 locus was mapped to a 38-kb region on chromosome 1 and sequence analysis of this region identified a single-nucleotide deletion in the 3′ region of an open reading frame (ORF) encoding a putative pectate lyase, leading to a frame shift and a longer ORF. Our results suggested that the premature senescence of the ospse1 may be regulated by a novel mechanism mediated by pectate lyase.
Journal of Integrative Plant Biology | 2013
Yuanling Chen; Hui-Lin Liang; Xingliang Ma; Su-Lin Lou; Yongyao Xie; Zhenlan Liu; Letian Chen; Yao-Guang Liu
Plant mutants are important bio-resources for crop breeding and gene functional studies. Conventional methods for generating mutant libraries by mutagenesis of seeds with physical or chemical agents are of low efficiency. Here, we developed a highly-efficient ethyl methanesulfonate (EMS) mutagenesis system based on suspension-cultured cells, with rice (Oryza sativa L.) as an example. We show that treatment of suspension-cultured tiny cell clusters with 0.4% EMS for 18-22 h followed by differentiation and regeneration produced as high as 29.4% independent mutant lines with visible phenotypic variations, including a number of important agronomic traits such as grain size, panicle size, grain or panicle shape, tiller number and angle, heading date, male sterility, and disease sensitivity. No mosaic mutant was observed in the mutant lines tested. In this mutant library, we obtained a mutant with an abnormally elongated uppermost internode. Sequencing and functional analysis revealed that this is a new allelic mutant of eui (elongated uppermost internode) caused by two point mutations in the first exon of the EUI gene, representing a successful example of this mutagenesis system.
Plant Molecular Biology | 2017
Su-Lin Lou; Shuifu Chen; Xiucai Zhao; Letian Chen; Jian Zhang; Hongxiang Fu; Yao-Guang Liu; Yuanling Chen
Key messageA rice mutant aberrant floral organ 1 (afo1) was identified, showing increased floral organ number, aberrant floral organ identity and loss of floral meristem determinacy. A disruption of sequence integrity at 6292-bp upstream of RFL by a T-DNA insertion led to varied RFL expression patterns in floral meristem and floret in afo1 and caused the mutant phenotype.AbstractThe LEAFY (LFY) transcription factor and its homologs affect many aspects of plant development, especially floral development. RICE FLORICAULA/LEAFY (RFL), the rice ortholog of LFY, has complicated expression patterns and different functions in floral development. However, the mechanisms regulating the spatial-temporal expression of RFL remain largely unknown. Here, we describe a rice aberrant floral organ 1 (afo1) mutant that was produced by a T-DNA insertion at 6292-bp upstream of the start codon of RFL. This insertion altered the expression of RFL in floral meristem (FM) and floret. The in situ hybridization result showed that, when florets appear, RFL was expressed almost exclusively at the palea/lemma adaxial base adjacent to lodicules in the wild-type panicle. However, in afo1 florets, RFL mRNA signals were detected in the region between lodicule and stamen, and strong signals persisted in FM. The altered pattern of RFL expression in afo1 resulted in enlarged FMs, more floral organs, aberrant floral organ identity, and loss of FM determinacy. Transformation of rice with an RFL construct driven by the 6292-bp upstream genomic sequence re-built the mutant phenotype similar to afo1. The results suggest that the far-upstream region of RFL may contain potential cis element(s) that are critical to define the precise spatial-temporal expression pattern of RFL for its function in floral development.