Quanzeng Wang
Center for Devices and Radiological Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quanzeng Wang.
Optics Express | 2008
Quanzeng Wang; Huizhong Yang; Anant Agrawal; Nam Sun Wang; T. Joshua Pfefer
A novel, multi-wavelength, fiberoptic system was constructed, evaluated and implemented to determine internal tissue optical properties at ultraviolet A (UVA) and visible (VIS) wavelengths. Inverse modeling was performed with a neural network to estimate absorption and reduced scattering coefficients based on spatially-resolved reflectance distributions. The model was calibrated with simulated reflectance datasets generated using a condensed Monte Carlo approach with absorption coefficients up to 85 cm(-1) and reduced scattering coefficients up to 118 cm(-1). After theoretical and experimental evaluations of the system, optical properties of porcine bladder, colon, esophagus, oral mucosa, and liver were measured at 325, 375, 405, 445 and 532 nm. These data provide evidence that as wavelengths decrease into the UVA, the dominant tissue chromophore shifts from hemoglobin to structural proteins such as collagen. This system provides a high level of accuracy over a wide range of optical properties, and should be particularly useful for in situ characterization of highly attenuating biological tissues in the UVA-VIS.
Applied Optics | 2010
Quanzeng Wang; Karthik Shastri; T. Joshua Pfefer
Improvements in measurement of epithelial tissue optical properties (OPs) in the ultraviolet and visible (UV-Vis) may lead to enhanced understanding of optical techniques for neoplasia detection. In this study, we investigated an approach based on fiber-optic measurement of reflectance to determine absorption and reduced scattering coefficients (μ(a) and μ(s)) in two-layer turbid media. Neural network inverse models were trained on simulation data for a wide variety of OP combinations (μ(a) = 1-22.5, μ(s) = 5-42.5 cm(-1)). Experimental measurements of phantoms with top-layer thicknesses (D) ranging from 0.22 to 0.66 mm were performed at three UV-Vis wavelengths. OP estimation accuracy was calculated and compared to theoretical results. Mean prediction errors were strongly correlated with D and ranged widely, from 1.5 to 12.1 cm(-1). Theoretical analyses indicated the potential for improving accuracy with alternate probe geometries. Although numerous challenges remain, this initial experimental study of an unconstrained approach for fiber-optic-based OP determination in two-layer epithelial tissue indicates the potential to provide useful measurements.
Biomedical Optics Express | 2014
Taylor Gould; Quanzeng Wang; T. Joshua Pfefer
Light-tissue interactions during photoacoustic imaging, including dynamic heat transfer processes in and around vascular structures, are not well established. A three-dimensional, transient, optical-thermal computational model was used to simulate energy deposition, temperature distributions and thermal damage in breast tissue during exposure to pulsed laser trains at 800 and 1064 nm. Rapid and repetitive temperature increases and thermal relaxation led to superpositioning effects that were highly dependent on vessel diameter and depth. For a ten second exposure at established safety limits, the maximum single-pulse and total temperature rise levels were 0.2°C and 5.8°C, respectively. No significant thermal damage was predicted. The impact of tissue optical properties, surface boundary condition and irradiation wavelength on peak temperature location and temperature evolution with time are discussed.
Applied Optics | 2014
V. N. Du Le; Quanzeng Wang; Taylor Gould; Jessica C. Ramella-Roman; T. Joshua Pfefer
Narrow-band imaging (NBI) is a spectrally selective reflectance imaging technique that is used clinically for enhancing visualization of superficial vasculature and has shown promise for applications such as early endoscopic detection of gastrointestinal neoplasia. We have studied the effect of vessel geometry and illumination wavelength on vascular contrast using idealized geometries in order to more quantitatively understand NBI and broadband or white light imaging of mucosal tissue. Simulations were performed using a three-dimensional, voxel-based Monte Carlo model incorporating discrete vessels. In all cases, either 415 or 540xa0nm illumination produced higher contrast than white light, yet white light did not always produce the lowest contrast. White light produced the lowest contrast for small vessels and intermediate contrast for large vessels (diameter≥100u2009u2009μm) at deep regions (vessel depth≥200u2009u2009μm). The results show that 415xa0nm illuminations provided superior contrast for smaller vessels at shallow depths while 540xa0nm provided superior contrast for larger vessels in deep regions. Besides 540xa0nm, our studies also indicate the potential of other wavelengths to achieve high contrast of large vessels at deep regions. Simulation results indicate the importance of three key mechanisms in determining spectral variations in contrast: intravascular hemoglobin (Hb) absorption in the vessel of interest, diffuse Hb absorption from collateral vasculature, and bulk tissue scattering. Measurements of NBI contrast in turbid phantoms incorporating 0.1-mm-diameter hemoglobin-filled capillary tubes indicated good agreement with modeling results. These results provide quantitative insights into light-tissue interactions and the effect of device and tissue properties on NBI performance.
Computer Methods and Programs in Biomedicine | 2011
T. Joshua Pfefer; Quanzeng Wang; Rebekah A. Drezek
Computational approaches for simulation of light-tissue interactions have provided extensive insight into biophotonic procedures for diagnosis and therapy. However, few studies have addressed simulation of time-resolved fluorescence (TRF) in tissue and none have combined Monte Carlo simulations with standard TRF processing algorithms to elucidate approaches for cancer detection in layered biological tissue. In this study, we investigate how illumination-collection parameters (e.g., collection angle and source-detector separation) influence the ability to measure fluorophore lifetime and tissue layer thickness. Decay curves are simulated with a Monte Carlo TRF light propagation model. Multi-exponential iterative deconvolution is used to determine lifetimes and fractional signal contributions. The ability to detect changes in mucosal thickness is optimized by probes that selectively interrogate regions superficial to the mucosal-submucosal boundary. Optimal accuracy in simultaneous determination of lifetimes in both layers is achieved when each layer contributes 40-60% of the signal. These results indicate that depth-selective approaches to TRF have the potential to enhance disease detection in layered biological tissue and that modeling can play an important role in probe design optimization.
IEEE Transactions on Biomedical Engineering | 2017
Pejhman Ghassemi; Bohan Wang; Jianting Wang; Quanzeng Wang; Yu Chen; T. Joshua Pfefer
We have investigated the potential for contrast-enhanced near-infrared fluorescence imaging of tissue on a mobile phone platform. Charge-coupled device- and phone-based cameras were used to image molded and three-dimensional-printed tissue phantoms, and an ex vivo animal model. Quantitative and qualitative evaluations of image quality demonstrate the viability of this approach and elucidate variations in performance due to wavelength, pixel color, and image processing.
Biomedical Optics Express | 2017
Quanzeng Wang; Azadeh Khanicheh; Dennis Leiner; David C. Shafer; Jurgen Zobel
The current International Organization for Standardization (ISO) standard (ISO 8600-3: 1997 including Amendment 1: 2003) for determining endoscope field of view (FOV) does not accurately characterize some novel endoscopic technologies such as endoscopes with a close focus distance and capsule endoscopes. We evaluated the endoscope FOV measurement method (the FOVWS method) in the current ISO 8600-3 standard and proposed a new method (the FOVEP method). We compared the two methods by measuring the FOV of 18 models of endoscopes (one device for each model) from seven key international manufacturers. We also estimated the device to device variation of two models of colonoscopes by measuring several hundreds of devices. Our results showed that the FOVEP method was more accurate than the FOVWS method, and could be used for all endoscopes. We also found that the labelled FOV values of many commercial endoscopes are significantly overstated. Our study can help endoscope users understand endoscope FOV and identify a proper method for FOV measurement. This paper can be used as a reference to revise the current endoscope FOV measurement standard.
Investigative Ophthalmology & Visual Science | 2016
Daniel Rodriguez; T. Joshua Pfefer; Quanzeng Wang; Pedro F. Lopez; Jessica C. Ramella-Roman
PurposenTwo-wavelength algorithms aimed at the extrapolation of retinal vasculature optical properties are being used in the clinical setting. Although robust, this approach has some clear mathematical limitations. We have conducted an in-depth study of this methodology and report on the limits and benefit of this approach.nnnMethodsnWe used a well-tested, voxel-based Monte Carlo model of light transfer into biological tissue combined with a seven-layer model of the human fundus to create reflectance maps of retina vessels at different oxygenation levels.nnnResultsnThis study shows that the two-wavelength approach works remarkably well in the optimal scenario of known calibration arteries and veins. Errors as a result of choroidal pigmentation and discrepancies in vessel size can be minimized with numerical approaches. When the calibration process deviates largely from physiological values, the technique fails with large errors.nnnConclusionsnThe two-wavelength approach is convenient, easy to implement, and suitable in studies where relative rather than absolute knowledge of retinal oximetry is necessary. A robust calibration step is paramount when using this approach.
Sensors | 2018
Yedukondala Dwith Chenna; Pejhman Ghassemi; T. Pfefer; Jon Casamento; Quanzeng Wang
Fever screening based on infrared (IR) thermographs (IRTs) is an approach that has been implemented during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome. A recently published international standard indicates that regions medially adjacent to the inner canthi provide accurate estimates of core body temperature and are preferred sites for fever screening. Therefore, rapid, automated identification of the canthi regions within facial IR images may greatly facilitate rapid fever screening of asymptomatic travelers. However, it is more difficult to accurately identify the canthi regions from IR images than from visible images that are rich with exploitable features. In this study, we developed and evaluated techniques for multi-modality image registration (MMIR) of simultaneously captured visible and IR facial images for fever screening. We used free form deformation (FFD) models based on edge maps to improve registration accuracy after an affine transformation. Two widely used FFD models in medical image registration based on the Demons and cubic B-spline algorithms were qualitatively compared. The results showed that the Demons algorithm outperformed the cubic B-spline algorithm, likely due to overfitting of outliers by the latter method. The quantitative measure of registration accuracy, obtained through selected control point correspondence, was within 2.8 ± 1.2 mm, which enables accurate and automatic localization of canthi regions in the IR images for temperature measurement.
Journal of Biomedical Optics | 2016
Quanzeng Wang; Wei Chung Cheng; Nitin Suresh; Hong Hua
Abstract. With improved diagnostic capabilities and complex optical designs, endoscopic technologies are advancing. As one of the several important optical performance characteristics, geometric distortion can negatively affect size estimation and feature identification related diagnosis. Therefore, a quantitative and simple distortion evaluation method is imperative for both the endoscopic industry and the medical device regulatory agent. However, no such method is available yet. While the image correction techniques are rather mature, they heavily depend on computational power to process multidimensional image data based on complex mathematical model, i.e., difficult to understand. Some commonly used distortion evaluation methods, such as the picture height distortion (DPH) or radial distortion (DRAD), are either too simple to accurately describe the distortion or subject to the error of deriving a reference image. We developed the basic local magnification (ML) method to evaluate endoscope distortion. Based on the method, we also developed ways to calculate DPH and DRAD. The method overcomes the aforementioned limitations, has clear physical meaning in the whole field of view, and can facilitate lesion size estimation during diagnosis. Most importantly, the method can facilitate endoscopic technology to market and potentially be adopted in an international endoscope standard.