Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Clinton Webb is active.

Publication


Featured researches published by R. Clinton Webb.


Nature Medicine | 2001

Heme oxygenase-1 protects against vascular constriction and proliferation

Henricus J. Duckers; Manfred Boehm; Andrea L. True; Shaw Fang Yet; Hong San; James L. Park; R. Clinton Webb; Mu En Lee; Gary J. Nabel; Elizabeth G. Nabel

Heme oxygenase (HO-1, encoded by Hmox1) is an inducible protein activated in systemic inflammatory conditions by oxidant stress. Vascular injury is characterized by a local reparative process with inflammatory components, indicating a potential protective role for HO-1 in arterial wound repair. Here we report that HO-1 directly reduces vasoconstriction and inhibits cell proliferation during vascular injury. Expression of HO-1 in arteries stimulated vascular relaxation, mediated by guanylate cyclase and cGMP, independent of nitric oxide. The unexpected effects of HO-1 on vascular smooth muscle cell growth were mediated by cell-cycle arrest involving p21Cip1. HO-1 reduced the proliferative response to vascular injury in vivo; expression of HO-1 in pig arteries inhibited lesion formation and Hmox1−/− mice produced hyperplastic arteries compared with controls. Induction of the HO-1 pathway moderates the severity of vascular injury by at least two adaptive mechanisms independent of nitric oxide, and is a potential therapeutic target for diseases of the vasculature.


Nature Medicine | 2001

Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway.

Kanchan Chitaley; Christopher J. Wingard; R. Clinton Webb; Heather Branam; Vivienne S. Stopper; Ronald W. Lewis; Thomas M. Mills

Relaxation of the smooth muscle cells in the cavernosal arterioles and sinuses results in increased blood flow into the penis, raising corpus cavernosum pressure to culminate in penile erection. Nitric oxide, released from non-adrenergic/non-cholinergic nerves, is considered the principle stimulator of cavernosal smooth muscle relaxation, however, the inhibition of vasoconstrictors (that is, norepinephrine and endothelin-1, refs. 5–9) cannot be ignored as a potential regulator of penile erection. The calcium-sensitizing ρ-A/Rho-kinase pathway may play a synergistic role in cavernosal vasoconstriction to maintain penile flaccidity. Rho-kinase is known to inhibit myosin light chain phosphatase, and to directly phosphorylate myosin light-chain (in solution), altogether resulting in a net increase in activated myosin and the promotion of cellular contraction. Although Rho-kinase protein and mRNA have been detected in cavernosal tissue, the role of Rho-kinase in the regulation of cavernosal tone is unknown. Using pharmacologic antagonism (Y-27632, ref. 13, 18), we examined the role of Rho-kinase in cavernosal tone, based on the hypothesis that antagonism of Rho-kinase results in increased corpus cavernosum pressure, initiating the erectile response independently of nitric oxide. Our finding, that Rho-kinase antagonism stimulates rat penile erection independently of nitric oxide, introduces a potential alternate avenue for the treatment of erectile dysfunction.


Hypertension | 2001

Long-Term Antioxidant Administration Attenuates Mineralocorticoid Hypertension and Renal Inflammatory Response

Richard Anthony Beswick; Hanfang Zhang; Dawnyetta Marable; John D. Catravas; William D. Hill; R. Clinton Webb

We previously reported increased monocyte/macrophage infiltration, reactive oxygen species accumulation, and nuclear factor-&kgr;B (NF-&kgr;B) activation in mineralocorticoid (deoxycorticosterone acetate [DOCA]) hypertensive rats. We tested the hypothesis that prolonged antioxidant administration inhibits superoxide accumulation, lowers blood pressure, and reduces NF-&kgr;B activation in DOCA-salt hypertensive rats. DOCA rats exhibited a significant increase in systolic blood pressure compared with sham rats. Aortic rings from DOCA rats exhibited increased superoxide (O2−) production compared with sham rats. In addition, the treatment of DOCA rats with pyrrolidinedithiocarbamate (PDTC) or 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (Tempol) caused a significant decrease in systolic blood pressure and aortic superoxide accumulation. Monocyte/macrophage infiltration was also significantly decreased in DOCA rats treated with PDTC or Tempol compared with untreated DOCA rats. NF-&kgr;B–binding activity was significantly greater in untreated DOCA rats than in either sham rats or PDTC- or Tempol-treated DOCA rats. Also, DOCA rats treated with Tempol exhibited no significant difference in NF-&kgr;B–binding activity compared with sham. These results suggest that antioxidants attenuate systolic blood pressure, suppress renal NF-&kgr;B–binding activity, and partly alleviate renal monocyte/macrophage infiltration in DOCA-salt hypertension.


Clinical Science | 2012

Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats

Gisele Facholi Bomfim; Rosangela A. dos Santos; Maria Aparecida de Oliveira; Fernanda R.C. Giachini; Eliana H. Akamine; Rita C. Tostes; Zuleica B. Fortes; R. Clinton Webb; Maria Helena C. Carvalho

Activation of Toll-like receptors (TLR) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of cardiovascular diseases. Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study we hypothesize that inhibition of TLR4 decreases blood pressure and improves vascular contractility in resistance arteries from spontaneously hypertensive rats (SHR). TLR4 protein expression in mesenteric resistance arteries was higher in 15 weeks-old SHR than in same age Wistar controls or in 5 weeks-old SHR. In order to decrease activation of TLR4, 15 weeks-old SHR and Wistar rats were treated with anti-TLR4 antibody or non-specific IgG control antibody for 15 days (1µg per day, i.p.). Treatment with anti-TLR4 decreased mean arterial pressure as well as TLR4 protein expression in mesenteric resistance arteries and interleukin-6 (IL-6) serum levels from SHR when compared to SHR treated with IgG. No changes in these parameters were found in Wistar treated rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to noradrenaline compared to IgG-treated-SHR. Inhibition of cyclooxygenase-1 (Cox) and Cox-2, enzymes related to inflammatory pathways, decreased noradrenaline responses only in mesenteric resistance arteries of SHR treated with IgG. Cox-2 expression and thromboxane A2 release were decreased in SHR treated with anti-TLR4 compared with IgG-treated-SHR. Our results suggest that TLR4 activation contributes to increased blood pressure, low grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.


Journal of Clinical Investigation | 1999

Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension

Michal Pravenec; Vaclav Zidek; Miroslava Šimáková; Vladimir Kren; Drahomira Krenova; Karel Horky; Marie Jáchymová; Blanka Míková; Ludmila Kazdova; Timothy J. Aitman; Paul C. Churchill; R. Clinton Webb; Nilesh H. Hingarh; Ying Yang; Jia Ming Wang; Elizabeth St. Lezin; Theodore W. Kurtz

Disorders of carbohydrate and lipid metabolism have been reported to cluster in patients with essential hypertension and in spontaneously hypertensive rats (SHRs). A deletion in the Cd36 gene on chromosome 4 has recently been implicated in defective carbohydrate and lipid metabolism in isolated adipocytes from SHRs. However, the role of Cd36 and chromosome 4 in the control of blood pressure and systemic cardiovascular risk factors in SHRs is unknown. In the SHR. BN-Il6/Npy congenic strain, we have found that transfer of a segment of chromosome 4 (including Cd36) from the Brown Norway (BN) rat onto the SHR background induces reductions in blood pressure and ameliorates dietary-induced glucose intolerance, hyperinsulinemia, and hypertriglyceridemia. These results demonstrate that a single chromosome region can influence a broad spectrum of cardiovascular risk factors involved in the hypertension metabolic syndrome. However, analysis of Cd36 genotypes in the SHR and stroke-prone SHR strains indicates that the deletion variant of Cd36 was not critical to the initial selection for hypertension in the SHR model. Thus, the ability of chromosome 4 to influence multiple cardiovascular risk factors, including hypertension, may depend on linkage of Cd36 to other genes trapped within the differential segment of the SHR. BN-Il6/Npy strain.


Clinical Science | 2012

Perivascular adipose tissue: More than just structural support

Theodora Szasz; R. Clinton Webb

PVAT (perivascular adipose tissue) has recently been recognized as a novel factor in vascular biology, with implications in the pathophysiology of cardiovascular disease. Composed mainly of adipocytes, PVAT releases a wide range of biologically active molecules that modulate vascular smooth muscle cell contraction, proliferation and migration. PVAT exerts an anti-contractile effect in various vascular beds which seems to be mediated by an as yet elusive PVRF [PVAT-derived relaxing factor(s)]. Considerable progress has been made on deciphering the nature and mechanisms of action of PVRF, and the PVRFs proposed until now are reviewed here. However, complex pathways seem to regulate PVAT function and more than one mechanism is probably responsible for PVAT actions in vascular biology. The present review describes our current knowledge on the structure and function of PVAT, with a focus on its role in modulating vascular tone. Potential involvements of PVAT dysfunction in obesity, hypertension and atherosclerosis will be highlighted.


Journal of The American Society of Hypertension | 2009

Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1.

Brandi M. Wynne; Chin Wei Chiao; R. Clinton Webb

Vasoactive peptides, such as endothelin-1 and angiotensin II are recognized by specific receptor proteins located in the cell membrane of target cells. Following receptor recognition, the specificity of the cellular response is achieved by G-protein coupling of ligand binding to the regulation of intracellular effectors. These intracellular effectors will be the subject of this brief review on contractile activity initiated by endothelin-1 and angiotensin II.Activation of receptors by endothelin-1 and angiotensin II in smooth muscle cells results in phopholipase C (PLC) activation leading to the generation of the second messengers insitol trisphosphate (IP(3)) and diacylglycerol (DAG). IP(3) stimulates intracellular Ca(2+) release from the sarcoplasmic reticulum and DAG causes protein kinase C (PKC) activation. Additionally, different Ca(2+) entry channels, such as voltage-operated (VOC), receptor-operated (ROC), and store-operated (SOC) Ca(2+) channels, as well as Ca(2+)-permeable nonselective cation channels (NSCC), are involved in the elevation of intracellular Ca(2+) concentration. The elevation in intracellular Ca(2+) is transient and initiates contractile activity by a Ca(2+)-calmodulin interaction, stimulating myosin light chain (MLC) phosphorylation. When the Ca(2+) concentration begins to decline, Ca(2+)-sensitization of the contractile proteins is signaled by the RhoA/Rho-kinase pathway to inhibit the dephosphorylation of MLC phosphatase (MLCP) thereby maintaining force generation. Removal of Ca(2+) from the cytosol and stimulation of MLCP initiates the process of smooth muscle relaxation. In pathological conditions such as hypertension, alterations in these cellular signaling components can lead to an over stimulated state causing maintained vasoconstriction and blood pressure elevation.


Cellular and Molecular Life Sciences | 2010

RhoA/Rho-kinase and vascular diseases: what is the link?

Kenia Pedrosa Nunes; Christiné S. Rigsby; R. Clinton Webb

RhoA/Rho-kinase pathway plays an important role in many pathological conditions. RhoA participates in the regulation of smooth muscle tone and activates many downstream kinases. The best characterized are the serine/threonine kinase isoforms (Rho-kinase or ROCK), ROCKα/ROCK2 and ROCKβ/ROCK1. ROCK is necessary for diverse functions such as local blood flow, arterial/pulmonary blood pressure, airway resistance and intestinal peristalsis. ROCK activation permits actin/myosin interactions and smooth muscle cells contraction by maintaining the activity of myosin light-chain kinase, independently of the free cytosolic calcium level. The sensitization of smooth muscle myofilaments to calcium has been implicated in many pathological states, such as hypertension, diabetes, heart attack, stroke, pulmonary hypertension, erectile dysfunction, and cancer. The focus of this review is on the involvement of RhoA/Rho-kinase in diseases. We will briefly describe the ROCK isoforms and the role of RhoA/Rho-kinase in the vasculature, before exploring the most recent findings regarding this pathway and various diseases.


Journal of Pharmacology and Experimental Therapeutics | 2006

Increased RhoA/Rho-kinase signaling mediates spontaneous tone in aorta from angiotensin II-induced hypertensive rats

Liming Jin; Zhekang Ying; Rob H. P. Hilgers; Jia Yin; Xueying Zhao; John D. Imig; R. Clinton Webb

Spontaneous tone in large arteries may contribute to the pathogenesis of hypertension. Reactive oxygen species and Ca2+ influx have been shown to stimulate the development of spontaneous tone in isolated aortic rings in several models of hypertensive rats. The aim of this study was to investigate the role of the RhoA/Rho-kinase signaling pathway in the development of spontaneous tone in angiotensin II-induced hypertension and to explore the underlying mechanisms of RhoA/Rho-kinase activation. Our results showed that spontaneous tone was greatly enhanced in endothelium-denuded aortic rings from angiotensin II-induced hypertensive rats compared with their normotensive counterparts (73 ± 5 versus 7 ± 3% of phenylephrine-induced maximal contraction, respectively). The Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) (0.1-10 μM) concentration dependently inhibited spontaneous tone in aortic rings from angiotensin II-treated rats. NADPH oxidase inhibitors diphenylene iodonium and apocynin also significantly reduced spontaneous tone. Chronic angiotensin II treatment markedly increased RhoA protein expression (57%) but had no effect on Rho guanine nucleotide exchange factor mRNA or Rho-kinase protein expression levels. In endothelium-denuded rings from normotensive rats, angiotensin II (100 nM) increased RhoA membrane translocation and phosphorylation of the myosin light chain phosphatase target subunit, which were both blocked by the NADPH oxidase inhibitor diphenylene iodonium (10 μM). In conclusion, these data suggest that chronic treatment with angiotensin II leads to up-regulation of the RhoA/Rho-kinase pathway, contributing to spontaneous tone development in rat aorta. Increased NADPH oxidase-dependent reactive oxygen species may be one of the mechanisms mediating the RhoA/Rho-kinase activation.


Vascular Health and Risk Management | 2013

The influence of perivascular adipose tissue on vascular homeostasis.

Theodora Szasz; Gisele Facholi Bomfim; R. Clinton Webb

The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

Collaboration


Dive into the R. Clinton Webb's collaboration.

Top Co-Authors

Avatar

Rita C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor V. Lima

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Romulo Leite

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Theodora Szasz

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Styliani Goulopoulou

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge