R. Daniel Kortschak
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Daniel Kortschak.
Current Biology | 2003
R. Daniel Kortschak; Gabrielle Samuel; Robert Saint; David J. Miller
A significant proportion of mammalian genes are not represented in the genomes of Drosophila, Caenorhabditis or Saccharomyces, and many of these are assumed to have been vertebrate innovations. To test this assumption, we conducted a preliminary EST project on the anthozoan cnidarian, Acropora millepora, a basal metazoan. More than 10% of the Acropora ESTs with strong metazoan matches to the databases had clear human homologs but were not represented in the Drosophila or Caenorhabditis genomes; this category includes a surprising diversity of transcription factors and metabolic proteins that were previously assumed to be restricted to vertebrates. Consistent with higher rates of divergence in the model invertebrates, three-way comparisons show that most Acropora ESTs match human sequences much more strongly than they do any Drosophila or Caenorhabditis sequence. Gene loss has thus been much more extensive in the model invertebrate lineages than previously assumed and, as a consequence, some genes formerly thought to be vertebrate inventions must have been present in the common metazoan ancestor. The complexity of the Acropora genome is paradoxical, given that this organism contains apparently few tissue types and the simplest extant nervous system consisting of a morphologically homogeneous nerve net.
Trends in Biochemical Sciences | 2000
R. Daniel Kortschak; Philip W. Tucker; Robert Saint
Members of the recently discovered ARID (AT-rich interaction domain) family of DNA-binding proteins are found in fungi and invertebrate and vertebrate metazoans. ARID-encoding genes are involved in a variety of biological processes including embryonic development, cell lineage gene regulation and cell cycle control. Although the specific roles of this domain and of ARID-containing proteins in transcriptional regulation are yet to be elucidated, they include both positive and negative transcriptional regulation and a likely involvement in the modification of chromatin structure.
Bioinformatics | 2013
Nicola Roberts; R. Daniel Kortschak; Wendy T. Parker; Andreas W. Schreiber; Susan Branford; Hamish S. Scott; Garique Glonek; David L. Adelson
Motivation: With the advent of relatively affordable high-throughput technologies, DNA sequencing of cancers is now common practice in cancer research projects and will be increasingly used in clinical practice to inform diagnosis and treatment. Somatic (cancer-only) single nucleotide variants (SNVs) are the simplest class of mutation, yet their identification in DNA sequencing data is confounded by germline polymorphisms, tumour heterogeneity and sequencing and analysis errors. Four recently published algorithms for the detection of somatic SNV sites in matched cancer–normal sequencing datasets are VarScan, SomaticSniper, JointSNVMix and Strelka. In this analysis, we apply these four SNV calling algorithms to cancer–normal Illumina exome sequencing of a chronic myeloid leukaemia (CML) patient. The candidate SNV sites returned by each algorithm are filtered to remove likely false positives, then characterized and compared to investigate the strengths and weaknesses of each SNV calling algorithm. Results: Comparing the candidate SNV sets returned by VarScan, SomaticSniper, JointSNVMix2 and Strelka revealed substantial differences with respect to the number and character of sites returned; the somatic probability scores assigned to the same sites; their susceptibility to various sources of noise; and their sensitivities to low-allelic-fraction candidates. Availability: Data accession number SRA081939, code at http://code.google.com/p/snv-caller-review/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
BioEssays | 2013
Atma M. Ivancevic; Ali M. Walsh; R. Daniel Kortschak; David L. Adelson
Horizontal transfer (HT) is the transmission of genetic material between non‐mating species, a phenomenon thought to occur rarely in multicellular eukaryotes. However, many transposable elements (TEs) are not only capable of HT, but have frequently jumped between widely divergent species. Here we review and integrate reported cases of HT in retrotransposons of the BovB family, and DNA transposons, over a broad range of animals spanning all continents. Our conclusions challenge the paradigm that HT in vertebrates is restricted to infective long terminal repeat (LTR) retrotransposons or retroviruses. This raises the possibility that other non‐LTR retrotransposons, such as L1 or CR1 elements, believed to be only vertically transmitted, can horizontally transfer between species. Growing evidence indicates that the process of HT is much more general across different TEs and species than previously believed, and that it likely shapes eukaryotic genomes and catalyses genome evolution.
PLOS Genetics | 2015
Shu Ly Lim; Zhi Peng Qu; R. Daniel Kortschak; David Lawrence; Joel Geoghegan; Anna-Lena Hempfling; Martin Bergmann; Christopher C. Goodnow; Christopher J. Ormandy; Lee Lee Wong; Jeffrey R. Mann; Hamish S. Scott; Duangporn Jamsai; David L. Adelson; Moira K. O’Bryan
piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program.
Development Genes and Evolution | 2002
Esther Camp; Rory M. Hope; R. Daniel Kortschak; Timothy C. Cox; Michael Lardelli
Three homologues of the Drosophila region-specific homeotic gene spalt (sal) have been isolated in zebrafish, sall1a, sall1b and sall3. Phylogenetic analysis of these genes against known sal DNA sequences showed zebrafish sall1a and sall1b to be orthologous to other vertebrate sal-1 genes and zebrafish sall3 to be orthologous to other vertebrate sal-3 genes, except Xenopus sall3. Phylogenetic reconstruction suggests that zebrafish sall1a and sall1b resulted from a gene duplication event occurring prior to the divergence of the ray-finned and lobe-finned fish lineages. Analysis of the expression pattern of the zebrafish sal genes shows that sall1a and sall3 share expression domains with both orthologous and non-orthologous vertebrate sal genes. Both are expressed in various regions of the CNS, including in primary motor neurons. Outside of the CNS, sall1a expression is observed in the otic vesicle (ear), heart and in a discrete region of the pronephric ducts. These analyses indicate that orthologies between zebrafish sal genes and other vertebrate sal genes do not imply equivalence of expression pattern and, therefore, that biological functions are not entirely conserved. However we suggest that, like other vertebrate sal genes, zebrafish sal genes have a role in neural development. Also, expression of zebrafish sall1a in the otic vesicle, heart sac and the pronephric ducts of zebrafish embryos is possibly consistent with some of the abnormalities seen in Sall1-deficient mice and in Townes-Brocks Syndrome, a human disorder which is caused by mutations in the human spalt gene SALL1.
Biology of Reproduction | 2013
Shu Ly Lim; Enkhjargal Tsend-Ayush; R. Daniel Kortschak; Reuben Jacob; Carmela Ricciardelli; Martin K. Oehler; Frank Grützner
ABSTRACT The PIWI-interacting RNA (piRNA) pathway is essential for germline development and transposable element repression. Key elements of this pathway are members of the piRNA-binding PIWI/Argonaute protein family and associated factors (e.g., VASA, MAELSTROM, and TUDOR domain proteins). PIWI-interacting RNAs have been identified in mouse testis and oocytes, but information about the expression of the different piRNA pathway genes, in particular in the mammalian ovary, remains incomplete. We investigated the evolution and expression of piRNA pathway genes in gonads of amniote species (chicken, platypus, and mouse). Database searches confirm a high level of conservation and revealed lineage-specific gain and loss of Piwi genes in vertebrates. Expression analysis in mammals shows that orthologs of Piwi-like (Piwil) genes, Mael (Maelstrom), Mvh (mouse vasa homolog), and Tdrd1 (Tudor domain-containing protein 1) are expressed in platypus adult testis. In contrast to mouse, Piwil4 is expressed in platypus and human adult testis. We found evidence for Mael and Piwil2 expression in mouse Sertoli cells. Importantly, we show mRNA expression of Piwil2, Piwil4, and Mael in oocytes and supporting cells of human, mouse, and platypus ovary. We found no Piwil1 expression in mouse and chicken ovary. The conservation of gene expression in somatic parts of the gonad and germ cells of species that diverged over 800 million yr ago indicates an important role in adult male and female gonad.
Genome Biology and Evolution | 2016
Atma M. Ivancevic; R. Daniel Kortschak; Terry Bertozzi; David L. Adelson
LINE-1 (L1) retrotransposons are dynamic elements. They have the potential to cause great genomic change because of their ability to ‘jump’ around the genome and amplify themselves, resulting in the duplication and rearrangement of regulatory DNA. Active L1, in particular, are often thought of as tightly constrained, homologous and ubiquitous elements with well-characterized domain organization. For the past 30 years, model organisms have been used to define L1s as 6–8 kb sequences containing a 5′-UTR, two open reading frames working harmoniously in cis, and a 3′-UTR with a polyA tail. In this study, we demonstrate the remarkable and overlooked diversity of L1s via a comprehensive phylogenetic analysis of elements from over 500 species from widely divergent branches of the tree of life. The rapid and recent growth of L1 elements in mammalian species is juxtaposed against the diverse lineages found in other metazoans and plants. In fact, some of these previously unexplored mammalian species (e.g. snub-nosed monkey, minke whale) exhibit L1 retrotranspositional ‘hyperactivity’ far surpassing that of human or mouse. In contrast, non-mammalian L1s have become so varied that the current classification system seems to inadequately capture their structural characteristics. Our findings illustrate how both long-term inherited evolutionary patterns and random bursts of activity in individual species can significantly alter genomes, highlighting the importance of L1 dynamics in eukaryotes.
Chromosome Research | 2012
Enkhjargal Tsend-Ayush; R. Daniel Kortschak; Pascal Bernard; Shu Ly Lim; Janelle Ryan; Ruben Rosenkranz; Tatiana Borodina; Juliane C. Dohm; Heinz Himmelbauer; Vincent R. Harley; Frank Grützner
The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9 + Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.
Progress in Biophysics & Molecular Biology | 2013
Kirsty Kitto; R. Daniel Kortschak
Biological systems exhibit a wide range of contextual effects, and this often makes it difficult to construct valid mathematical models of their behaviour. In particular, mathematical paradigms built upon the successes of Newtonian physics make assumptions about the nature of biological systems that are unlikely to hold true. After discussing two of the key assumptions underlying the Newtonian paradigm, we discuss two key aspects of the formalism that extended it, Quantum Theory (QT). We draw attention to the similarities between biological and quantum systems, motivating the development of a similar formalism that can be applied to the modelling of biological processes.