R. H. Moore
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. H. Moore.
Aerosol Science and Technology | 2010
R. H. Moore; Athanasios Nenes; Jeessy Medina
We present Scanning Mobility CCN Analysis (SMCA) as a novel method for obtaining rapid measurements of size-resolved cloud condensation nuclei (CCN) distributions and activation kinetics. SMCA involves sampling the monodisperse outlet stream of a Differential Mobility Analyzer (DMA) operated in scanning voltage mode concurrently with CCN and condensation particle counters. By applying the same inversion algorithm as used for obtaining size distributions with a scanning mobility particle sizer (SMPS), CCN concentration and activated droplet size are obtained as a function of mobility size over the timescale of an SMPS scan (typically 60–120 s). Methods to account for multiple charging, particle non-sphericity, and limited counting statistics are presented. SMCA is demonstrated using commercial SMPS and CFSTGC instruments with the manufacturer-provided control software. The method is evaluated for activation of both laboratory aerosol and ambient aerosol obtained during the 2004 NEAQS-ITCT2k4 field campaign. It is shown that SMCA reproduces the results obtained with a DMA operating in voltage “stepping” mode.
Environmental Science & Technology | 2011
D. A. Lack; Christopher D. Cappa; Justin M. Langridge; Roya Bahreini; Gina Buffaloe; C. A. Brock; K. Cerully; D. J. Coffman; Katherine Hayden; John S. Holloway; Paola Massoli; Shao-Meng Li; Robert McLaren; Ann M. Middlebrook; R. H. Moore; Athanasios Nenes; I. Nuaaman; Timothy B. Onasch; J. Peischl; A. E. Perring; Patricia K. Quinn; T. B. Ryerson; Joshua P. Schwartz; Ryan Spackman; Steven C. Wofsy; D. R. Worsnop; B. Xiang; Eric Williams
Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.
Aerosol Science and Technology | 2009
R. H. Moore; Athanasios Nenes
The Continuous-Flow Streamwise Thermal-Gradient Cloud Condensation Nuclei Counter is a commercially available instrument that is widely used for laboratory and field measurements of cloud condensation nuclei (CCN). Typically, the instrument is operated at a constant flow rate, and supersaturation is adjusted by changing the column streamwise temperature difference, which is slow and may introduce particle volatilization biases. We present a new mode of operation, termed “Scanning Flow CCN Analysis” (SFCA), in which the flow rate in the growth chamber is changed over time, while maintaining a constant temperature gradient. This causes supersaturation to continuously change, allowing the rapid and continuous measurement of supersaturation spectra over timescales relevant for airborne measurements (∼ 10–60 seconds and potentially even less) without being affected by shifts in activation kinetics and aerosol composition. SFCA has been evaluated with both calibration and ambient aerosol with excellent results.
Proceedings of the National Academy of Sciences of the United States of America | 2013
T. Raatikainen; Athanasios Nenes; John H. Seinfeld; Ricardo Morales; R. H. Moore; T. L. Lathem; Sara Lance; Luz T. Padró; Jack J. Lin; K. Cerully; A. Bougiatioti; J. Cozic; Christopher R. Ruehl; Patrick Y. Chuang; Bruce E. Anderson; Haflidi H. Jonsson; Nikos Mihalopoulos; James N. Smith
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.
Nature | 2017
R. H. Moore; K. L. Thornhill; Bernadett Weinzierl; Daniel Sauer; Eugenio D’Ascoli; J. Kim; Michael Lichtenstern; Monika Scheibe; Brian Beaton; A. J. Beyersdorf; J. Barrick; Dan I. Bulzan; Chelsea A. Corr; Ewan Crosbie; Tina Jurkat; Robert D. Martin; Dean Riddick; Michael Shook; Gregory Slover; Christiane Voigt; Robert J. White; Edward L. Winstead; Richard Yasky; Luke D. Ziemba; Anthony Brown; Hans Schlager; Bruce E. Anderson
Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC‐8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.
Environmental Science & Technology | 2012
R. H. Moore; T. Raatikainen; Justin M. Langridge; Roya Bahreini; C. A. Brock; John S. Holloway; D. A. Lack; Ann M. Middlebrook; A. E. Perring; Joshua P. Schwarz; J. Ryan Spackman; Athanasios Nenes
Secondary organic aerosol (SOA) resulting from the oxidation of organic species emitted by the Deepwater Horizon oil spill were sampled during two survey flights conducted by a National Oceanic and Atmospheric Administration WP-3D aircraft in June 2010. A new technique for fast measurements of cloud condensation nuclei (CCN) supersaturation spectra called Scanning Flow CCN Analysis was deployed for the first time on an airborne platform. Retrieved CCN spectra show that most particles act as CCN above (0.3 ± 0.05)% supersaturation, which increased to (0.4 ± 0.1)% supersaturation for the most organic-rich aerosol sampled. The aerosol hygroscopicity parameter, κ, was inferred from both measurements of CCN activity and from humidified-particle light extinction, and varied from 0.05 to 0.10 within the emissions plumes. However, κ values were lower than expected from chemical composition measurements, indicating a degree of external mixing or size-dependent chemistry, which was reconciled assuming bimodal, size-dependent composition. The CCN droplet effective water uptake coefficient, γ(cond), was inferred from the data using a comprehensive instrument model, and no significant delay in droplet activation kinetics from the presence of organics was observed, despite a large fraction of hydrocarbon-like SOA present in the aerosol.
Aerosol Science and Technology | 2014
T. Raatikainen; Jack J. Lin; K. Cerully; T. L. Lathem; R. H. Moore; Athanasios Nenes
We have developed a new numerical model for the non-steady-state operation of the Droplet Measurement Technologies (DMT) Cloud Condensation Nuclei (CCN) counter. The model simulates the Scanning Flow CCN Analysis (SFCA) instrument mode, where a wide supersaturation range is continuously scanned by cycling the flow rate over 20–120 s. Model accuracy is verified using a broad set of data which include ammonium sulfate calibration data (under conditions of low CCN concentration) and airborne measurements where either the instrument pressure was not controlled or where exceptionally high CCN loadings were observed. It is shown here for the first time that small pressure and flow fluctuations can have a disproportionately large effect on the instrument supersaturation due to localized compressive/expansive heating and cooling. The model shows that, for fast scan times, these effects can explain the observed shape of the SFCA supersaturation-flow calibration curve and transients in the outlet droplet sizes. The extent of supersaturation depletion from the presence of CCN during SFCA operation is also examined; we found that depletion effects can be neglected below 4000 cm−3 for CCN number. Copyright 2014 American Association for Aerosol Research
Bulletin of the American Meteorological Society | 2017
William L. Smith; Christy Hansen; Anthony Bucholtz; Bruce E. Anderson; Matthew Beckley; Joseph G. Corbett; Richard I. Cullather; Keith M. Hines; Michelle A. Hofton; Seiji Kato; Dan Lubin; R. H. Moore; Michal Segal Rosenhaimer; J. Redemann; Sebastian Schmidt; Ryan C. Scott; Shi Song; J. Barrick; J. Bryan Blair; David H. Bromwich; Colleen Brooks; G. Chen; Helen Cornejo; Chelsea A. Corr; Seung-Hee Ham; A. Scott Kittelman; Scott Knappmiller; Samuel E. LeBlanc; Norman G. Loeb; Colin Miller
AbstractThe National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most c...
Scientific Data | 2017
R. H. Moore; Michael Shook; Luke D. Ziemba; Joshua P. DiGangi; Edward L. Winstead; Bastian Rauch; Tina Jurkat; K. L. Thornhill; Ewan Crosbie; Claire Robinson; Taylor Shingler; Bruce E. Anderson
We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016–1017 kg−1 and 1014–1016 kg−1, respectively. Black-carbon-equivalent particle mass EIs vary between 175–941 mg kg−1 (except for the GE GEnx engines at 46 mg kg−1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.
NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013
T. Raatikainen; Athanasios Nenes; John H. Seinfeld; Ricardo Morales; R. H. Moore; T. L. Lathem; S. Lance; Luz T. Padró; Jack J. Lin; K. Cerully; A. Bougiatioti; J. Cozic; Christopher R. Ruehl; Patrick Y. Chuang; Bruce E. Anderson; Haflidi H. Jonsson; Nikos Mihalopoulos; James N. Smith
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. An analysis of ten globally relevant data sets of cloud condensation nuclei is used to constrain αc, and find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This means that uncertainty in water vapor accommodation on droplets is less than previously thought and resolves a long-standing issue in cloud physics.