Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. James Housden is active.

Publication


Featured researches published by R. James Housden.


Journal of Cardiovascular Magnetic Resonance | 2013

Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge

Rashed Karim; R. James Housden; Mayuragoban Balasubramaniam; Zhong Chen; Daniel Perry; Ayesha Uddin; Yosra Al-Beyatti; Ebrahim Palkhi; Prince Acheampong; Samantha Obom; Anja Hennemuth; Yingli Lu; Wenjia Bai; Wenzhe Shi; Yi Gao; Heinz Otto Peitgen; Perry Radau; Reza Razavi; Allen R. Tannenbaum; Daniel Rueckert; Josh Cates; Tobias Schaeffter; Dana C. Peters; Robert S. MacLeod; Kawal S. Rhode

BackgroundLate Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging can be used to visualise regions of fibrosis and scarring in the left atrium (LA) myocardium. This can be important for treatment stratification of patients with atrial fibrillation (AF) and for assessment of treatment after radio frequency catheter ablation (RFCA). In this paper we present a standardised evaluation benchmarking framework for algorithms segmenting fibrosis and scar from LGE CMR images. The algorithms reported are the response to an open challenge that was put to the medical imaging community through an ISBI (IEEE International Symposium on Biomedical Imaging) workshop.MethodsThe image database consisted of 60 multicenter, multivendor LGE CMR image datasets from patients with AF, with 30 images taken before and 30 after RFCA for the treatment of AF. A reference standard for scar and fibrosis was established by merging manual segmentations from three observers. Furthermore, scar was also quantified using 2, 3 and 4 standard deviations (SD) and full-width-at-half-maximum (FWHM) methods. Seven institutions responded to the challenge: Imperial College (IC), Mevis Fraunhofer (MV), Sunnybrook Health Sciences (SY), Harvard/Boston University (HB), Yale School of Medicine (YL), King’s College London (KCL) and Utah CARMA (UTA, UTB). There were 8 different algorithms evaluated in this study.ResultsSome algorithms were able to perform significantly better than SD and FWHM methods in both pre- and post-ablation imaging. Segmentation in pre-ablation images was challenging and good correlation with the reference standard was found in post-ablation images. Overlap scores (out of 100) with the reference standard were as follows: Pre: IC = 37, MV = 22, SY = 17, YL = 48, KCL = 30, UTA = 42, UTB = 45; Post: IC = 76, MV = 85, SY = 73, HB = 76, YL = 84, KCL = 78, UTA = 78, UTB = 72.ConclusionsThe study concludes that currently no algorithm is deemed clearly better than others. There is scope for further algorithmic developments in LA fibrosis and scar quantification from LGE CMR images. Benchmarking of future scar segmentation algorithms is thus important. The proposed benchmarking framework is made available as open-source and new participants can evaluate their algorithms via a web-based interface.


Medical Physics | 2013

Real‐time x‐ray fluoroscopy‐based catheter detection and tracking for cardiac electrophysiology interventions

YingLiang Ma; Nicolas Gogin; Pascal Yves Francois Cathier; R. James Housden; Geert Gijsbers; Michael Cooklin; Mark O'Neill; Jaswinder Gill; C. Aldo Rinaldi; Reza Razavi; Kawal S. Rhode

PURPOSE X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction. METHODS In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time. RESULTS The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 ± 0.29, 0.92 ± 0.61, and 0.63 ± 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 ± 0.28, 0.64 ± 0.37, and 0.53 ± 0.38 mm and success rates increased to 100%, 99.2%, and 96.5% for the CS, ablation, and lasso catheters, respectively. Subjective clinical evaluation by three experienced electrophysiologists showed that the detection and tracking results were clinically acceptable. CONCLUSIONS The proposed detection and tracking methods are automatic and can detect and track CS, ablation, and lasso catheters simultaneously and in real-time. The accuracy of the proposed methods is sub-mm and the methods are robust toward low-dose x-ray fluoroscopic images, which are mainly used during EP procedures to maintain low radiation dose.


Computerized Medical Imaging and Graphics | 2014

Surface flattening of the human left atrium and proof-of-concept clinical applications

Rashed Karim; YingLiang Ma; Munjung Jang; R. James Housden; Steven E. Williams; Zhong Chen; Asghar Ataollahi; Kaspar Althoefer; C. Aldo Rinaldi; Reza Razavi; Mark D. O’Neill; Tobias Schaeftter; Kawal S. Rhode

Surface flattening in medical imaging has seen widespread use in neurology and more recently in cardiology to describe the left ventricle using the bulls-eye plot. The method is particularly useful to standardize the display of functional information derived from medical imaging and catheter-based measurements. We hypothesized that a similar approach could be possible for the more complex shape of the left atrium (LA) and that the surface flattening could be useful for the management of patients with atrial fibrillation (AF). We implemented an existing surface mesh parameterization approach to flatten and unfold 3D LA models. Mapping errors going from 2D to 3D and the inverse were investigated both qualitatively and quantitatively using synthetic data of regular shapes and computer tomography scans of an anthropomorphic phantom. Testing of the approach was carried out using data from 14 patients undergoing ablation treatment for AF. 3D LA meshes were obtained from magnetic resonance imaging and electroanatomical mapping systems. These were unfolded using the developed approach and used to demonstrate proof-of-concept applications, such as the display of scar information, electrical information and catheter position. The work carried out shows that the unfolding of complex cardiac structures, such as the LA, is feasible and has several potential clinical uses for the management of patients with AF.


Medical Image Analysis | 2013

A novel Bayesian respiratory motion model to estimate and resolve uncertainty in image-guided cardiac interventions

Devis Peressutti; Graeme P. Penney; R. James Housden; Christoph Kolbitsch; Alberto Gómez; Erik-Jan Rijkhorst; Dean C. Barratt; Kawal S. Rhode; Andrew P. King

In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method.


Medical Image Analysis | 2016

Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images

Rashed Karim; Pranav Bhagirath; Piet Claus; R. James Housden; Zhong Chen; Zahra Karimaghaloo; Hyon-Mok Sohn; Laura Lara Rodríguez; Sergio Vera; Xènia Albà; Anja Hennemuth; Heinz-Otto Peitgen; Tal Arbel; Miguel Ángel González Ballester; Alejandro F. Frangi; Marco Götte; Reza Razavi; Tobias Schaeffter; Kawal S. Rhode

Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the Full-Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges.


Medical Physics | 2014

A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

Maria Panayiotou; Andrew P. King; R. James Housden; YingLiang Ma; Michael Cooklin; Mark D. O’Neill; Jaswinder Gill; C. Aldo Rinaldi; Kawal S. Rhode

PURPOSE Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. METHODS The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. RESULTS For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √2, representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. CONCLUSIONS The proposed technique can therefore extract useful information from interventional x-ray images while minimizing exposure to ionizing radiation.


IEEE Journal of Translational Engineering in Health and Medicine | 2014

Novel System for Real-Time Integration of 3-D Echocardiography and Fluoroscopy for Image-Guided Cardiac Interventions: Preclinical Validation and Clinical Feasibility Evaluation

Aruna Arujuna; R. James Housden; YingLiang Ma; Ronak Rajani; Gang Gao; Niels Nijhof; Pascal Yves Francois Cathier; Roland Bullens; Geert Gijsbers; Victoria Parish; Stamatis Kapetanakis; Jane Hancock; C. Aldo Rinaldi; Michael Cooklin; Jaswinder Gill; Martyn Thomas; Mark O'Neill; Reza Razavi; Kawal S. Rhode

Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures.


Revised Selected Papers of the 4th International Workshop on Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges - Volume 8330 | 2013

Extraction of Cardiac and Respiratory Motion Information from Cardiac X-Ray Fluoroscopy Images Using Hierarchical Manifold Learning

Maria Panayiotou; Andrew P. King; Kanwal K. Bhatia; R. James Housden; YingLiang Ma; C. Aldo Rinaldi; Jas Gill; Michael Cooklin; Mark O'Neill; Kawal S. Rhode

We present a novel and clinically useful method to automatically determine the regions that carry cardiac and respiratory motion information directly from standard mono-plane X-ray fluoroscopy images. We demonstrate the application of our method for the purposes of retrospective cardiac and respiratory gating of X-ray images. Validation is performed on five mono-plane imaging sequences comprising a total of 284 frames from five patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. We established end-inspiration, end-expiration and systolic gating with success rates of 100%, 100% and 95.3%, respectively. This technique is useful for retrospective gating of X-ray images and, unlike many previously proposed techniques, does not require specific catheters to be visible and works without any knowledge of catheter geometry.


international conference on functional imaging and modeling of heart | 2013

Three-modality registration for guidance of minimally invasive cardiac interventions

R. James Housden; Mandeep Basra; YingLiang Ma; Andrew P. King; Roland Bullens; Nick Child; Jaswinder Gill; C. Aldo Rinaldi; Victoria Parish; Kawal S. Rhode

Image guidance of minimally invasive cardiac interventions can be augmented by registering together different imaging modalities. In this paper, we propose a method to combine three modalities: X-ray fluoroscopy, trans-esophageal ultrasound and pre-procedure MRI or CT. The registration of the pre-procedure image involves a potentially unreliable manual initialisation of its position in an X-ray projection view. The method therefore includes an automatic correction using the esophagus location as an additional constraint. We test the method in a phantom experiment and find that initialising the pre-procedure image with up to 9mm offset from its correct position results in a 92% registration success rate. The esophagus constraint improves the capture range in the out-of-plane direction, which simplifies the manual initialisation.


international conference information processing | 2012

Cardiac unfold: a novel technique for image-guided cardiac catheterization procedures

YingLiang Ma; Rashed Karim; R. James Housden; Geert Gijsbers; Roland Bullens; Christopher Aldo Rinaldi; Reza Razavi; Tobias Schaeffter; Kawal S. Rhode

X-ray fluoroscopically-guided cardiac catheterization procedures are commonly carried out for the treatment of cardiac arrhythmias, such as atrial fibrillation (AF) and cardiac resynchronization therapy (CRT). X-ray images have poor soft tissue contrast and, for this reason, overlay of a 3D roadmap derived from pre-procedure volumetric image data can be used to add anatomical information. However, current overlay technologies have the limitation that 3D information is displayed on a 2D screen. Therefore, it is not possible for the cardiologist to appreciate the true positional relationship between anatomical/functional data and the position of the interventional devices. We prose a navigation methodology, called cardiac unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device tracking. This would allow more intuitive navigation since the entire 3D scene is displayed simultaneously on a 2D plot. A real-time unfold guidance platform for CRT was developed, where navigation is performed using the standard AHA 16-segment bulls-eye plot for the left ventricle (LV). The accuracy of the unfold navigation was assessed in 13 patient data sets by computing the registration errors of the LV pacing lead electrodes and was found to be 2.2 ± 0.9 mm. An unfold method was also developed for the left atrium (LA) using trimmed B-spline surfaces. The method was applied to 5 patient data sets and its utility was demonstrated for displaying information from delayed enhancement MRI of patients that had undergone radio-frequency ablation.

Collaboration


Dive into the R. James Housden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaswinder Gill

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Cooklin

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge