R. L. Kauffman
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. L. Kauffman.
Physics of Plasmas | 2004
J. D. Lindl; Peter A. Amendt; R. L. Berger; S. Gail Glendinning; S. H. Glenzer; S. W. Haan; R. L. Kauffman; O. L. Landen; L. J. Suter
The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...
Review of Scientific Instruments | 1986
H. N. Kornblum; R. L. Kauffman; J. A. Smith
We have made absolute measurements of x‐ray spectra from 0.1–1.5 keV produced by plasmas from targets irradiated by the Lawrence Livermore National Laboratory Nova laser. These measurements were made using a 15‐channel K‐ and L‐edge filtered x‐ray diode system. Valid interpretation of the results from this type of diagnostic requires some care in eliminating the effect of channel response at photon energies higher than the absorption edge. Significant errors can occur if this is disregarded. We will discuss the techniques used and the magnitude of the effects observed. Integrated x‐ray energy in the 1.5–3‐keV region is inferred from the results.
Review of Scientific Instruments | 2004
E. L. Dewald; K. M. Campbell; R. E. Turner; J. P. Holder; O. L. Landen; S. H. Glenzer; R. L. Kauffman; L. J. Suter; M. Landon; M. Rhodes; D. Lee
Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic range using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted...
Journal of Applied Physics | 1996
R. C. Spitzer; Thaddeus J. Orzechowski; D. W. Phillion; R. L. Kauffman; C. Cerjan
The conversion efficiency of spectral emission from laser‐irradiated solid targets was investigated for short wavelength source development. The plasma brightness was quantified using absolutely calibrated detectors for 20 materials and spectra were obtained between 50 and 200 A. Laser parameters such as wavelength, pulse length, intensity, and spot size were systematically varied to establish a comprehensive database for source optimization. Qualitative differences in the underlying dominant emission features as a function of atomic number and laser wavelength were observed that accounted for the relatively high spectral conversion efficiencies produced. In the specific case of Sn, a conversion efficiency greater than 0.8%/eV has been observed in the technologically important region of λ=134.0 A using a laser intensity of 1–2×1011 W/cm2.
Physics of Plasmas | 1996
B. J. MacGowan; Bedros Afeyan; C. A. Back; R. L. Berger; G. Bonnaud; M. Casanova; Bruce I. Cohen; D. E. Desenne; D. F. DuBois; A. G. Dulieu; K. G. Estabrook; J. C. Fernandez; S. H. Glenzer; D. E. Hinkel; T. B. Kaiser; D. H. Kalantar; R. L. Kauffman; R. K. Kirkwood; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; D. S. Montgomery; John Moody; David H. Munro; L. V. Powers; H. A. Rose; C. Rousseaux; R. E. Turner; B. H. Wilde; S. C. Wilks
Scattering of laser light by stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) is a concern for indirect drive inertial confinement fusion (ICF). The hohlraum designs for the National Ignition Facility (NIF) raise particular concerns due to the large scale and homogeneity of the plasmas within them. Experiments at Nova have studied laser–plasma interactions within large scale length plasmas that mimic many of the characteristics of the NIF hohlraum plasmas. Filamentation and scattering of laser light by SBS and SRS have been investigated as a function of beam smoothing and plasma conditions. Narrowly collimated SRS backscatter has been observed from low density, low‐Z, plasmas, which are representative of the plasma filling most of the NIF hohlraum. SBS backscatter is found to occur in the high‐Z plasma of gold ablated from the wall. Both SBS and SRS are observed to be at acceptable levels in experiments using smoothing by spectral dispersion (SSD).
Journal of Applied Physics | 1983
Dennis L. Matthews; E. M. Campbell; N. M. Ceglio; G. Hermes; R. L. Kauffman; L. N. Koppel; R.W. Lee; Kenneth R. Manes; V. C. Rupert; V. W. Slivinsky; Robert Turner; F. Ze
We report the absolute conversion efficiency ξx from the incident laser light energy to x‐ray photons for laser‐produced plasmas. Potential x‐ray backlighting (radiography) line sources having photon energies from 1.4 to 8.6 keV are studied as a function of laser wavelength, pulsewidth, and intensity. The laser intensity and pulsewidth range from 1014 to 1016 W/cm2, 100 ps to 2 ns and include incident wavelengths of 1.06, 0.53, and 0.35 μm. We found that K‐shell x‐ray line emission ξx : (1) decreases with increasing x‐ray energy, (2) decreases with increasing laser intensity, (3) decreases rapidly with pulselength, and (4) moderately increases with decreasing laser wavelength. On the contrary, for Au M band emission, at a fixed laser intensity and pulsewidth, ξx significantly increases (∼25×) upon decreasing the laser wavelength from 1.06 to 0.35 μm.
Physics of Plasmas | 1996
L. J. Suter; R. L. Kauffman; C. B. Darrow; A. A. Hauer; H. N. Kornblum; O. L. Landen; Thaddeus J. Orzechowski; D. W. Phillion; J. L. Porter; L. V. Powers; A. Richard; M. D. Rosen; A. R. Thiessen; R. J. Wallace
Nearly 10 years of Nova [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser‐heated hohlraums. Our most successful quantitative modeling tool is two‐dimensional (2‐D) LASNEX numerical simulations [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975)]. Analysis of the simulations provides us with insight into the physics of hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high‐Z blow‐off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding.
Applied Optics | 1983
Natale M. Ceglio; R. L. Kauffman; Andrew M. Hawryluk; H. Medecki
The development of a new time-resolved x-ray spectrometer is reported in which a free-standing x-ray transmission grating is coupled to a soft x-ray streak camera. The instrument measures continuous x-ray spectra with 20-psec temporal resolution and moderate spectral resolution (deltalambda >/= 1 A) over a broad spectral range (0.1-5 keV) with high sensitivity and large information recording capacity. Its capabilities are well suited to investigation of laser-generated plasmas, and they nicely complement the characteristics of other time-resolved spectroscopic techniques presently in use. The transmission grating spectrometer has been used on a variety of laser-plasma experiments. We report the first measurements of the temporal variation of continuous low-energy x-ray spectra from laser-irradiated disk targets.
Physics of Plasmas | 2008
D. Babonneau; M. Primout; F. Girard; J.-P. Jadaud; M. Naudy; Bruno Villette; S. Depierreux; C. Blancard; G. Faussurier; K. B. Fournier; L. J. Suter; R. L. Kauffman; S. H. Glenzer; M. C. Miller; Jacob Grun; J. Davis
A set of materials—titanium, copper, and germanium—has been experimented with at the OMEGA laser facility [Boehly, Opt. Commun. 133, 495 (1997)] by irradiating thin foils with a prepulse prior to a main pulse with variable delay, in order to design efficient x-ray laser-sources for backlighting, material testing, and code validation. This concept led to increasing factors from 2 to 4 comparing to cases without prepulse, in the experimental conditions. As a result, high multi-keV x-ray conversion rates have been obtained: 9% for titanium around 4keV, 1% for copper around 8keV, and 2.5 to 3% for germanium around 10keV, which places these pre-exploded metallic targets close to the gas with respect to their performance, with wider energy range. A good agreement with hydroradiative code FCI2 [Schurtz, Phys. Plasmas 7, 4238 (2000)] calculations is found for titanium and copper on all diagnostics, with nonlocal-thermal-equilibrium atomic physics and, either nonlocal thermal conduction taking self-generated B-fie...
Review of Scientific Instruments | 2010
J. L. Kline; K. Widmann; A. Warrick; R.E. Olson; C. A. Thomas; A. S. Moore; L. J. Suter; O. L. Landen; D. A. Callahan; S. Azevedo; J. Liebman; S. H. Glenzer; A. D. Conder; S. Dixit; P. Torres; V. Tran; E. L. Dewald; J. Kamperschroer; L. J. Atherton; R. Beeler; L. V. Berzins; J. Celeste; C. A. Haynam; W. W. Hsing; D. W. Larson; B. J. MacGowan; D. E. Hinkel; D. H. Kalantar; R. L. Kauffman; J. D. Kilkenny
The first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an ∼20 times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30±10% more flux than predicted by the preshot radiation hydrodynamic simulations. To validate these results, careful verification of all component calibrations, cable deconvolution, and software analysis routines has been conducted. In addition, a half Hohlraum experiment was conducted using a single 2 ns long axial quad with an irradiance of ∼2×10(15) W/cm(2) for comparison with NIF Early Light experiments completed in 2004. We have also completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1×10(14) W/cm(2) over 5 ns) to avoid sensitivity to modeling uncertainties for nonlocal heat conduction and nonlinear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-Hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere, and the calculated Au conversion efficiency agree to ±5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we conclude that the 30±10% higher than expected radiation fluxes from the 96 and 192 beam vacuum Hohlraums are attributable to differences in physics of the larger Hohlraums.