R. Li
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Li.
Science | 2004
Steven W. Squyres; Raymond E. Arvidson; James F. Bell; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; C. d'Uston; Thanasis E. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; Joshua A. Grant; Ronald Greeley; John P. Grotzinger; Larry A. Haskin; K. E. Herkenhoff; S. F. Hviid; James Richard Johnson; G. Klingelhöfer; Andrew H. Knoll; Geoffrey A. Landis; Mark T. Lemmon; R. Li
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
Journal of Geophysical Research | 2006
Raymond E. Arvidson; S. W. Squyres; Robert C. Anderson; James F. Bell; Diana L. Blaney; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; P. A. de Souza; C. d'Uston; T. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; J. A. Grant; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Brian C. Hahn; Larry A. Haskin; K. E. Herkenhoff; Joel A. Hurowitz; S. F. Hviid
Spirit landed on the floor of Gusev Crater and conducted initial operations on soil-covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind-blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of monolayers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggests that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
Science | 2004
L. A. Soderblom; Robert C. Anderson; Raymond E. Arvidson; James F. Bell; Nathalie A. Cabrol; Wendy M. Calvin; Philip R. Christensen; B. C. Clark; T. Economou; B. L. Ehlmann; William H. Farrand; David A. Fike; Ralf Gellert; Timothy D. Glotch; M. Golombek; Ronald Greeley; John P. Grotzinger; K. E. Herkenhoff; Douglas J. Jerolmack; James Richard Johnson; Brad L. Jolliff; G. Klingelhöfer; Andrew H. Knoll; Z. A. Learner; R. Li; M. C. Malin; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris
The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.
Science | 2012
Steven W. Squyres; Raymond E. Arvidson; James F. Bell; F. Calef; B. C. Clark; Barbara A. Cohen; L.A. Crumpler; P. A. de Souza; William H. Farrand; Ralf Gellert; J. A. Grant; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; G. Paulsen; Melissa S. Rice; Steven W. Ruff; Christian Schröder; Albert S. Yen; K. Zacny
Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.
Science | 2014
Raymond E. Arvidson; Steven W. Squyres; James F. Bell; Jeffrey G. Catalano; B. C. Clark; Larry S. Crumpler; P. A. de Souza; Alberto G. Fairén; William H. Farrand; V. K. Fox; R. Gellert; Anupam Ghosh; M. P. Golombek; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; J. M. Moore; Richard V. Morris; Scott L. Murchie; T. J. Parker; Gale Paulsen; J. W. Rice; Steven W. Ruff; M. D. Smith
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Science | 2004
James F. Bell; S. W. Squyres; Raymond E. Arvidson; H. M. Arneson; D. S. Bass; Wendy M. Calvin; William H. Farrand; W. Goetz; M. P. Golombek; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Alexander G. Hayes; M. Y. H. Hubbard; K. E. Herkenhoff; M. J. Johnson; James Richard Johnson; Jonathan Joseph; K. M. Kinch; Mark T. Lemmon; R. Li; M. B. Madsen; J. N. Maki; M. C. Malin; E. McCartney; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris; E. Z. Noe Dobrea
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron–rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Science | 2004
Raymond E. Arvidson; Robert C. Anderson; Paul Bartlett; James F. Bell; P. R. Christensen; P. Chu; K. Davis; B. L. Ehlmann; M. P. Golombek; S. Gorevan; Edward A. Guinness; A. F. C. Haldemann; K. E. Herkenhoff; Geoffrey A. Landis; R. Li; R. Lindemann; D. W. Ming; T. Myrick; T. J. Parker; L. Richter; F. P. Seelos; L. A. Soderblom; S. W. Squyres; R. Sullivan; Jim Wilson
The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.
Journal of Geophysical Research | 2010
Raymond E. Arvidson; James F. Bell; Paolo Bellutta; Nathalie A. Cabrol; Jeffrey G. Catalano; J. Cohen; Larry S. Crumpler; D. J. Des Marais; T. A. Estlin; William H. Farrand; R. Gellert; J. A. Grant; R. N. Greenberger; Edward A. Guinness; K. E. Herkenhoff; J. A. Herman; Karl Iagnemma; James Richard Johnson; G. Klingelhöfer; R. Li; Kimberly Ann Lichtenberg; S. Maxwell; D. W. Ming; Richard V. Morris; Melissa S. Rice; Steven W. Ruff; Amy Shaw; K. L. Siebach; P. A. de Souza; A. W. Stroupe
Spirit Mars Rover Mission : Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater
Science | 2009
Steven W. Squyres; Andrew H. Knoll; Raymond E. Arvidson; J. W. Ashley; James F. Bell; Wendy M. Calvin; Philip R. Christensen; Benton C. Clark; Barbara A. Cohen; P. A. de Souza; Lauren Edgar; William H. Farrand; Iris Fleischer; R. Gellert; M. P. Golombek; John A. Grant; John P. Grotzinger; Alexander G. Hayes; Kenneth E. Herkenhoff; James Richard Johnson; Bradley L. Jolliff; G. Klingelhöfer; Amy T. Knudson; R. Li; Timothy J. McCoy; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; Richard V. Morris; J. W. Rice
“Lake” Victoria? After having explored the Eagle and Endurance craters, which are separated by only 800 meters, the Mars Exploration Rover Opportunity spent 2 years at Victoria, a much larger impact crater located 6 kilometers south across Meridiani Planum. Sedimentary rocks previously analyzed at Eagle and Endurance point to local environmental conditions that included abundant liquid water in the ancient past. Now, an analysis of rocks in the walls of Victoria by Squyres et al. (p. 1058) reveals that the aqueous alteration processes that operated at Eagle and Endurance also acted at Victoria. In addition, sedimentary layering in the crater walls preserves evidence of ancient windblown dunes. Water-induced alteration processes once acted on sedimentary rocks across a plain near the equator of Mars. The Mars rover Opportunity has explored Victoria crater, a ~750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ~6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.
Journal of Geophysical Research | 2008
Raymond E. Arvidson; Steven W. Ruff; Richard V. Morris; D. W. Ming; Larry S. Crumpler; Albert S. Yen; Steven W. Squyres; R. Sullivan; James F. Bell; Nathalie A. Cabrol; B. C. Clark; William H. Farrand; R. Gellert; R. N. Greenberger; J. A. Grant; Edward A. Guinness; K. E. Herkenhoff; Joel A. Hurowitz; James Richard Johnson; G. Klingelhöfer; Kevin W. Lewis; R. Li; Timothy J. McCoy; Jeffrey Edward Moersch; Harry Y. McSween; Scott L. Murchie; Mariek E. Schmidt; Christian Schröder; Aihui H. Wang; Sandra Margot Wiseman
This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirits data to understand the range of spectral signatures observed over the Columbia Hills by the Mars Reconnaissance Orbiters Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral imager (0.4–4 μm) is summarized. We show that CRISM spectra are controlled by the proportion of ferric-rich dust to ferrous-bearing igneous minerals exposed in ripples and other wind-blown deposits. The evidence for aqueous alteration derived from Spirits data is associated with outcrops that are too small to be detected from orbital observations or with materials exposed from the shallow subsurface during rover activities. Although orbital observations show many other locations on Mars with evidence for minerals formed or altered in an aqueous environment, Spirits data imply that the older crust of Mars has been altered even more extensively than evident from orbital data. This result greatly increases the potential that the surface or shallow subsurface was once a habitable regime.