Walter Durka
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Durka.
Molecular Ecology | 2005
Walter Durka; Oliver Bossdorf; Daniel Prati; Harald Auge
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (FST = 0.704) and the introduced (FST = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.
Ecological Monographs | 2011
Helge Bruelheide; Martin Böhnke; Sabine Both; Teng Fang; Thorsten Assmann; Martin Baruffol; Jürgen Bauhus; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Markus Fischer; Christian Geißler; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Andy Hector; Wenzel Kröber; Peter Kühn; Anne C. Lang; Karin Nadrowski; Kequan Pei; Michael Scherer-Lorenzen; Xuezheng Shi; Thomas Scholten; Andreas Schuldt; Stefan Trogisch; Goddert von Oheimb
Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30 × 30 m plots (n = 27) from five successional stages ( 1 m in height in each plot and counted all woody recruits (bank of all seedlings ≤1 m in height) in each central 10 × 10 m quadrant of each plot. In addition, we measured a number of environmen...
Journal of Ecology | 2013
Oliver Purschke; Barbara Christine Schmid; Martin T. Sykes; Peter Poschlod; Stefan G. Michalski; Walter Durka; Ingolf Kühn; Marten Winter; Honor C. Prentice
Summary 1. Theory predicts that the processes generating biodiversity after disturbance will change during succession. Comparisons of phylogenetic and functional (alpha and beta) diversity with taxonomic diversity can provide insights into the extent to which community assembly is driven by deterministic or stochastic processes, but comparative approaches have yet to be applied to successional systems. 2. We characterized taxonomic, phylogenetic and functional plant (alpha and beta) diversity within and between four successional stages in a > 270-year-long arable-to-grassland chronosequence. Null models were used to test whether functional and phylogenetic turnover differed from random expectations, given the levels of species diversity. 3. The three facets of diversity showed different patterns of change during succession. Between early and early-mid succession, species richness increased but there was no increase in functional or phylogenetic diversity. Higher than predicted levels of functional similarity between species within the early and early-mid successional stages, indicate that abiotic filters have selected for sets of functionally similar species within sites. Between late-mid and late succession, there was no further increase in species richness, but a significant increase in functional alpha diversity, suggesting that functionally redundant species were replaced by functionally more dissimilar species. Functional turnover between stages was higher than predicted, and higher than within-stage turnover, indicating that different assembly processes act at different successional stages. 4. Synthesis. Analysis of spatial and temporal turnover in different facets of diversity suggests that deterministic processes generate biodiversity during post-disturbance ecosystem development and that the relative importance of assembly processes has changed over time. Trait-mediated abiotic filtering appears to play an important role in community assembly during the early and early-mid stages of arable-to-grassland succession, whereas the relative importance of competitive exclusion appears to have increased towards the later successional stages. Phylogenetic diversity provided a poor reflection of functional diversity and did not contribute to inferences about underlying assembly processes. Functionally deterministic assembly suggests that it may be possible to predict future post-disturbance changes in biodiversity, and associated ecosystem attributes, on the basis of species’ functional traits but not phylogeny.
Ecology | 2012
Walter Durka; Stefan G. Michalski
This data set represents a comprehensive, dated phylogeny of a large European flora comprising the vascular plants of the British Isles, Germany, The Netherlands, and Switzerland, totaling 4685 species. The phylogeny thus encompasses all species in the trait databases BIOLFLOR, PLANTATT, and BioBase 2003. The topology of the phylogentic tree is based on a backbone family phylogeny of the Angiosperm Phylogeny Group III. Subsequently, partial phylogenetic subtrees derived from a total of 518 recent molecular studies were manually pruned onto the backbone tree, using multi-gene consensus topologies if possible. Similarly, 1103 internal nodes and the root node were dated based on 261 recent studies. Finally, an ultrametric tree was calculated by placing undated nodes evenly between dated nodes. The phylogeny provides a reference data set for comparative analyses of trait correlations, trait evolution, trait based ecological processes, community assembly, or other phylogenetically informed analyses across a la...
Methods in Ecology and Evolution | 2014
Helge Bruelheide; Karin Nadrowski; Thorsten Assmann; Jürgen Bauhus; Sabine Both; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Jessica L. M. Gutknecht; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Alexandra-Maria Klein; Peter Kühn; Yu Liang; Xiaojuan Liu; Stefan G. Michalski; Pascal A. Niklaus; Kequan Pei; Michael Scherer-Lorenzen; Thomas Scholten; Andreas Schuldt; Gunnar Seidler; Stefan Trogisch; Goddert von Oheimb; Erik Welk; Christian Wirth
Summary 1. Biodiversity–ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25� 8 9 25� 8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ‘ecoscape’ to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achiev
Oecologia | 2008
Oliver Schweiger; Stefan Klotz; Walter Durka; Ingolf Kühn
Traditional measures of biodiversity, such as species richness, usually treat species as being equal. As this is obviously not the case, measuring diversity in terms of features accumulated over evolutionary history provides additional value to theoretical and applied ecology. Several phylogenetic diversity indices exist, but their behaviour has not yet been tested in a comparative framework. We provide a test of ten commonly used phylogenetic diversity indices based on 40 simulated phylogenies of varying topology. We restrict our analysis to a topological fully resolved tree without information on branch lengths and species lists with presence–absence data. A total of 38,000 artificial communities varying in species richness covering 5–95% of the phylogenies were created by random resampling. The indices were evaluated based on their ability to meet a priori defined requirements. No index meets all requirements, but three indices turned out to be more suitable than others under particular conditions. Average taxonomic distinctness (AvTD) and intensive quadratic entropy (J) are calculated by averaging and are, therefore, unbiased by species richness while reflecting phylogeny per se well. However, averaging leads to the violation of set monotonicity, which requires that species extinction cannot increase the index. Total taxonomic distinctness (TTD) sums up distinctiveness values for particular species across the community. It is therefore strongly linked to species richness and reflects phylogeny per se weakly but satisfies set monotonicity. We suggest that AvTD and J are best applied to studies that compare spatially or temporally rather independent communities that potentially vary strongly in their phylogenetic composition—i.e. where set monotonicity is a more negligible issue, but independence of species richness is desired. In contrast, we suggest that TTD be used in studies that compare rather interdependent communities where changes occur more gradually by species extinction or introduction. Calculating AvTD or TTD, depending on the research question, in addition to species richness is strongly recommended.
Molecular Ecology | 2005
W. Babik; Walter Durka; Jacek Radwan
Major histocompatibility complex (MHC) genes, coding molecules which play an important role in immune response, are the most polymorphic genes known in vertebrates. However, MHC polymorphism in some species is limited. MHC monomorphism at several MHC class I and II loci was previously reported for two neighbouring northern European populations of the Eurasian beaver (Castor fiber) and reduced selection for polymorphism has been hypothesized. Here, we analysed a partial sequence of the second exon of the MHC II DRB locus from seven relict European and Asian beaver populations. We detected 10 unique alleles among 76 beavers analysed. Only a western Siberian population was polymorphic, with four alleles detected in 10 individuals. Each of the remaining populations was fixed for a different allele. Sequences showed considerable divergence, suggesting the long persistence of allelic lineages. A significant excess of nonsynonymous substitutions was detected at the antigen binding sites, indicating that sequence evolution of beaver DRB was driven by positive selection. Current MHC monomorphism in the majority of populations may be the result of the superimposition of the recent bottleneck on pre‐existing genetic structure resulting from population subdivision and differential pathogen pressure.
Molecular Ecology | 2010
Susanne Lachmuth; Walter Durka; Frank M. Schurr
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.
Journal of Chemical Ecology | 2004
Manfred Kaib; Patrick Jmhasly; Lena Wilfert; Walter Durka; Stephan Franke; Wittko Francke; Reinhard H. Leuthold; Roland Brandl
Cuticular hydrocarbons are among the prime candidates for nestmate recognition in social insects. We analyzed the variation of cuticular hydrocarbons in the termite species M. subhyalinus in West Africa (Comoë National Park) on a small spatial scale (<1 km). We found considerable variation in the composition of cuticular hydrocarbons among colonies, with four distinct chemical phenotypes. Different phenotypes occurred within each of the four habitats. The difference between these phenotypes is primarily due to unsaturated compounds. A clear correlation between the difference of the hydrocarbon composition and the aggression between colonies was found. This correlation also holds in a multivariate analysis of genetic similarity (measured by AFLPs), morphometric distances (measured by Mahalanobis-distances), as well as geographic distances between colonies. In a more detailed analysis of the correlation between the composition of cuticular hydrocarbons and aggression, we found that no single compound is sufficient to explain variation in aggression between pairings of colonies. Thus, termites seem to use a bouquet of compounds. Multiple regression analysis suggested that many of these compounds are unsaturated hydrocarbons and, thus, may play a key role in colony recognition.
Basic and Applied Ecology | 2003
Katrin Maurer; Walter Durka; Jürg Stöcklin
Betr. den Nordwestschweizer Jura Why should some species be so much more common than others? Here, we propose that traits affecting dispersal and persistence can be used to predict the frequency of occurrence of a species in grassland remnants in the Swiss Jura Mountains. We established the frequency of occurrence of 112 plant species in 96 remnants of calcareous grassland in NW Switzerland. We determined the following eight traits for each species: (1) dispersal category (unassisted, ant-, adhesion- or wind-dispersed), (2) terminal velocity of diaspores, (3) plant height, (4) mass per seed, (5) seed shape (variance of length, width and height), (6) onset of flowering, (7) duration of flowering, and (8) life form (clonal perennials, perennials without pronounced vegetative reproduction, short-lived species). Then we tested whether there is a correlation among these traits with the frequency of occurrence of a species in grassland remnants using stepwise multiple regression with the original data as well as with phylogenetically independent contrasts (PICs) calculated with a phylogeny based on recent molecular analysis. Species with an early onset of flowering (p > 0.01, R-2 = 0.09), a clonal life form (p > 0.01, R-2 = 0.08), a long duration of flowering (p > 0.02, R-2 = 0.04) and with heavy seeds (p > 0.05, R-2 = 0.03) occurred more frequently than others. In total the model explained 26 variance in species` frequency. Results were confirmed by the analysis with PICs except for the one concerning life form. Our results suggest that traits enhancing persistence are more important for the frequency of occurrence of a species in calcareous grassland than traits affecting dispersal. This might imply that in grassland remnants colonisations by far-distance dispersal are insignificant because of a lack of diaspore exchange among populations.