Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachael Beale is active.

Publication


Featured researches published by Rachael Beale.


Chemical Society Reviews | 2012

Ocean-atmosphere trace gas exchange.

Lucy J. Carpenter; Stephen D. Archer; Rachael Beale

The oceans contribute significantly to the global emissions of a number of atmospherically important volatile gases, notably those containing sulfur, nitrogen and halogens. Such gases play critical roles not only in global biogeochemical cycling but also in a wide range of atmospheric processes including marine aerosol formation and modification, tropospheric ozone formation and destruction, photooxidant cycling and stratospheric ozone loss. A number of marine emissions are greenhouse gases, others influence the Earths radiative budget indirectly through aerosol formation and/or by modifying oxidant levels and thus changing the atmospheric lifetime of gases such as methane. In this article we review current literature concerning the physical, chemical and biological controls on the sea-air emissions of a wide range of gases including dimethyl sulphide (DMS), halocarbons, nitrogen-containing gases including ammonia (NH(3)), amines (including dimethylamine, DMA, and diethylamine, DEA), alkyl nitrates (RONO(2)) and nitrous oxide (N(2)O), non-methane hydrocarbons (NMHC) including isoprene and oxygenated (O)VOCs, methane (CH(4)) and carbon monoxide (CO). Where possible we review the current global emission budgets of these gases as well as known mechanisms for their formation and loss in the surface ocean.


The ISME Journal | 2011

Microbial methanol uptake in northeast Atlantic waters

Joanna L. Dixon; Rachael Beale; Philip D. Nightingale

Methanol is the predominant oxygenated volatile organic compound in the troposphere, where it can significantly influence the oxidising capacity of the atmosphere. However, we do not understand which processes control oceanic concentrations, and hence, whether the oceans are a source or a sink to the atmosphere. We report the first methanol loss rates in seawater by demonstrating that 14C-labelled methanol can be used to determine microbial uptake into particulate biomass, and oxidation to 14CO2. We have found that methanol is used predominantly as a microbial energy source, but also demonstrated its use as a carbon source. We report biological methanol oxidation rates between 2.1 and 8.4 nmol l−1 day−1 in surface seawater of the northeast Atlantic. Kinetic experiments predict a Vmax of up to 29 nmol l−1 day−1, with a high affinity Km constant of 9.3 nM in more productive coastal waters. We report surface concentrations of methanol in the western English channel of 97±8 nM (n=4) between May and June 2010, and for the wider temperate North Atlantic waters of 70±13 nM (n=6). The biological turnover time of methanol has been estimated between 7 and 33 days, although kinetic experiments suggest a 7-day turnover in more productive shelf waters. Methanol uptake rates into microbial particles significantly correlated with bacterial and phytoplankton parameters, suggesting that it could be used as a carbon source by some bacteria and possibly some mixotrophic eukaryotes. Our results provide the first methanol loss rates from seawater, which will improve the understanding of the global methanol budget.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Atmospheric deposition of methanol over the Atlantic Ocean

Mingxi Yang; Philip D. Nightingale; Rachael Beale; Peter S. Liss; B. W. Blomquist; Christopher W. Fairall

Significance Transport of gases between the ocean and the atmosphere has profound implications for our environment and the Earth’s climate. An example of this transport is the oceanic uptake of carbon dioxide, which has buffered us from a higher concentration of this greenhouse gas in the atmosphere while also causing ocean acidification. Here we describe the first direct measurements of air–sea methanol transfer. Atmospheric methanol, a ubiquitous and abundant organic gas of primarily terrestrial origin, is observed to be transported over thousands of kilometers and deposited over the ocean, where it is likely consumed by marine microbes. We quantify the rate of methanol deposition and examine the governing processes near the air–sea interface. In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models.


Environmental Science & Technology | 2012

Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: implications for atmospheric OVOC budgets and oxidative capacity.

K. A. Read; Lucy J. Carpenter; S. R. Arnold; Rachael Beale; Philip D. Nightingale; J. R. Hopkins; Alastair C. Lewis; James Lee; L. Mendes; S. J. Pickering

Oxygenated volatile organic compounds (OVOCs) in the atmosphere are precursors to peroxy acetyl nitrate (PAN), affect the tropospheric ozone budget, and in the remote marine environment represent a significant sink of the hydroxyl radical (OH). The sparse observational database for these compounds, particularly in the tropics, contributes to a high uncertainty in their emissions and atmospheric significance. Here, we show measurements of acetone, methanol, and acetaldehyde in the tropical remote marine boundary layer made between October 2006 and September 2011 at the Cape Verde Atmospheric Observatory (CVAO) (16.85° N, 24.87° W). Mean mixing ratios of acetone, methanol, and acetaldehyde were 546 ± 295 pptv, 742 ± 419 pptv, and 428 ± 190 pptv, respectively, averaged from approximately hourly values over this five-year period. The CAM-Chem global chemical transport model reproduced annual average acetone concentrations well (21% overestimation) but underestimated levels by a factor of 2 in autumn and overestimated concentrations in winter. Annual average concentrations of acetaldehyde were underestimated by a factor of 10, rising to a factor of 40 in summer, and methanol was underestimated on average by a factor of 2, peaking to over a factor of 4 in spring. The model predicted summer minima in acetaldehyde and acetone, which were not apparent in the observations. CAM-Chem was adapted to include a two-way sea-air flux parametrization based on seawater measurements made in the Atlantic Ocean, and the resultant fluxes suggest that the tropical Atlantic region is a net sink for acetone but a net source for methanol and acetaldehyde. Inclusion of the ocean fluxes resulted in good model simulations of monthly averaged methanol levels although still with a 3-fold underestimation in acetaldehyde. Wintertime acetone levels were better simulated, but the observed autumn levels were more severely underestimated than in the standard model. We suggest that the latter may be caused by underestimated terrestrial biogenic African primary and/or secondary OVOC sources by the model. The model underestimation of acetaldehyde concentrations all year round implies a consistent significant missing source, potentially from secondary chemistry of higher alkanes produced biogenically from plants or from the ocean. We estimate that low model bias in OVOC abundances in the remote tropical marine atmosphere may result in up to 8% underestimation of the global methane lifetime due to missing model OH reactivity. Underestimation of acetaldehyde concentrations is responsible for the bulk (∼70%) of this missing reactivity.


Analytica Chimica Acta | 2011

Quantification of oxygenated volatile organic compounds in seawater by membrane inlet-proton transfer reaction/mass spectrometry

Rachael Beale; Peter S. Liss; Joanna L. Dixon; Philip D. Nightingale

The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.


Frontiers in Microbiology | 2014

Microbial acetone oxidation in coastal seawater

Joanna L. Dixon; Rachael Beale; Stephanie L. Sargeant; Glen A. Tarran; Philip D. Nightingale

Acetone is an important oxygenated volatile organic compound (OVOC) in the troposphere where it influences the oxidizing capacity of the atmosphere. However, the air-sea flux is not well quantified, in part due to a lack of knowledge regarding which processes control oceanic concentrations, and, specifically whether microbial oxidation to CO2 represents a significant loss process. We demonstrate that 14C labeled acetone can be used to determine microbial oxidation to 14CO2. Linear microbial rates of acetone oxidation to CO2 were observed for between 0.75-3.5 h at a seasonally eutrophic coastal station located in the western English Channel (L4). A kinetic experiment in summer at station L4 gave a Vmax of 4.1 pmol L-1 h-1, with a Km constant of 54 pM. We then used this technique to obtain microbial acetone loss rates ranging between 1.2 and 42 pmol L-1 h-1.(monthly averages) over an annual cycle at L4, with maximum rates observed during winter months. The biological turnover time of acetone (in situ concentration divided by microbial oxidation rate) in surface waters varied from ~3 days in February 2011, when in situ concentrations were 3 ± 1 nM, to >240 days in June 2011, when concentrations were more than twofold higher at 7.5 ± 0.7 nM. These relatively low marine microbial acetone oxidation rates, when normalized to in situ concentrations, suggest that marine microbes preferentially utilize other OVOCs such as methanol and acetaldehyde.


Geophysical Research Letters | 2017

The Atlantic Ocean surface microlayer from 50°N to 50°S is ubiquitously enriched in surfactants at wind speeds up to 13 m s−1

Bita Sabbaghzadeh; Robert C. Upstill-Goddard; Rachael Beale; Ryan Pereira; Philip D. Nightingale

We report the first measurements of surfactant activity (SA) in the sea surface microlayer (SML) and in sub-surface waters (SSW) at the ocean basin scale, for two Atlantic Meridional Transects (AMT) from 50°N to 50°S during 2014 and 2015. Northern hemisphere (NH) SA was significantly higher than southern hemisphere (SH) SA in the SML and in the SSW. SA enrichment factors (EF = SASML/SASSW) were also higher in the NH, for wind speeds up to ~13 m s-1, questioning a prior assertion that Atlantic Ocean wind speeds > 12 m s-1 poleward of 30°N and 30°S would preclude high EFs and showing the SML to be self-sustaining with respect to SA. Our results imply that surfactants exert a control on air-sea CO2 exchange across the whole North Atlantic CO2 sink region and that the contribution made by high wind, high latitude oceans to air-sea gas exchange globally should be re-examined.


Reference Module in Earth Systems and Environmental Sciences#R##N#Treatise on Geochemistry (Second Edition) | 2014

Air–Sea Exchange of Marine Trace Gases

Rachael Beale; Martin Johnson; Peter S. Liss; Philip D. Nightingale

Many of the reactive trace gases detected in the atmosphere are both emitted from and deposited to the global oceans via exchange across the air–sea interface. The resistance to transfer through both air and water phases is highly sensitive to physical drivers (waves, bubbles, films, etc.), which can either enhance or suppress the rate of diffusion. In addition to outlining the fundamental processes controlling the air–sea gas exchange, the authors discuss these drivers, describe the existing parameterizations used to predict transfer velocities, and summarize the novel techniques for measuring in situ exchange rates. They review trace gases that influence climate via radiative forcing (greenhouse gases), those that can alter the oxidative capacity of the atmosphere (nitrogen- and sulfur-containing gases), and those that impact ozone levels (organohalogens), both in the troposphere and stratosphere. They review the known biological and chemical routes of production and destruction within the water column for these gases, whether the ocean acts as a source or sink, and whether temporal and spatial variations in saturation anomalies are observed. A current estimate of the marine contribution to the total atmospheric flux of these gases, which often highlights the significance of the oceans in biogeochemical cycling of trace gases, is provided, and how air–sea gas fluxes may change in the future is briefly assessed.


Bulletin of the American Meteorological Society | 2009

Supplement to physical exchanges at the air-sea interface: UK-SOLAS Field Measurements

Ian M. Brooks; Margaret J. Yelland; Robert C. Upstill-Goddard; Philip D. Nightingale; Stephen D. Archer; Eric A. D'Asaro; Rachael Beale; Cory M. Beatty; B. W. Blomquist; A. Anthony Bloom; Barbara J. Brooks; John Cluderay; David Coles; John W. H. Dacey; Michael D. DeGrandpre; Jo Dixon; William M. Drennan; Joseph Gabriele; Laura Goldson; Nick J. Hardman-Mountford; Martin K. Hill; Matt Horn; Ping-Chang Hsueh; Barry J. Huebert; Gerrit de Leeuw; T.G. Leighton; M.I. Liddicoat; Justin J. N. Lingard; Craig McNeil; J. B. McQuaid

This document is a supplement to “Physical Exchanges at the Air–Sea Interface: UK–SOLAS Field Measurements,” by Ian M. Brooks, Margaret J. Yelland, Robert C. Upstill-Goddard, Philip D. Nightingale, Steve Archer, Eric d’Asaro, Rachael Beale, Cory Beatty, Byron Blomquist, A. Anthony Bloom, Barbara J. Brooks, John Cluderay, David Coles, John Dacey, Michael DeGrandpre, Jo Dixon, William M. Drennan, Joseph Gabriele, Laura Goldson, Nick Hardman-Mountford, Martin K. Hill, Matt Horn, Ping-Chang Hsueh, Barry Huebert, Gerrit de Leeuw, Timothy G. Leighton, Malcolm Liddicoat, Justin J. N. Lingard, Craig McNeil, James B. McQuaid, Ben I. Moat, Gerald Moore, Craig Neill, Sarah J. Norris, Simon O’Doherty, Robin W. Pascal, John Prytherch, Mike Rebozo, Erik Sahlee, Matt Salter, Ute Schuster, Ingunn Skjelvan, Hans Slagter, Michael H. Smith, Paul D. Smith, Meric Srokosz, John A. Stephens, Peter K. Taylor, Maciej Telszewski, Roisin Walsh, Brian Ward, David K. Woolf, Dickon Young, and Henk Zemmelink (Bull. Amer. Meteor. Soc., 90, 629–644) • ©2009 American Meteorological Society • Corresponding author: Ian M. Brooks, Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom • E-mail: [email protected] • DOI:10.1175/2008BAMS2578.2


Biogeosciences | 2011

Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

Joanna L. Dixon; Rachael Beale; Philip D. Nightingale

Collaboration


Dive into the Rachael Beale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna L. Dixon

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter S. Liss

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

B. W. Blomquist

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingxi Yang

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Smyth

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Johnson

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen D. Archer

Plymouth Marine Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge