Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ragna Sack is active.

Publication


Featured researches published by Ragna Sack.


EMBO Reports | 2005

TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing

Astrid D Haase; Lukasz Jaskiewicz; Haidi Zhang; Sébastien Lainé; Ragna Sack; Anne Gatignol; Witold Filipowicz

Dicer is a key enzyme involved in RNA interference (RNAi) and microRNA (miRNA) pathways. It is required for biogenesis of miRNAs and small interfering RNAs (siRNAs), and also has a role in the effector steps of RNA silencing. Apart from Argonautes, no proteins are known to associate with Dicer in mammalian cells. In this work, we describe the ide.jpgication of TRBP (human immunodeficiency virus (HIV‐1) transactivating response (TAR) RNA‐binding protein) as a protein partner of human Dicer. We show that TRBP is required for optimal RNA silencing mediated by siRNAs and endogenous miRNAs, and that it facilitates cleavage of pre‐miRNA in vitro. TRBP had previously been assigned several functions, including inhibition of the interferon‐induced double‐stranded RNA‐regulated protein kinase PKR and modulation of HIV‐1 gene expression by association with TAR. The TRBP–Dicer interaction shown raises interesting questions about the potential interplay between RNAi and interferon–PKR pathways.


Molecular Cell | 2011

Histone Methylation by PRC2 Is Inhibited by Active Chromatin Marks

Frank W. Schmitges; Archana B. Prusty; Mahamadou Faty; Alexandra Stützer; Gondichatnahalli M. Lingaraju; Jonathan Aiwazian; Ragna Sack; Daniel Hess; Ling Li; Shaolian Zhou; Richard D. Bunker; Urs Wirth; Tewis Bouwmeester; Andreas Bauer; Nga Ly-Hartig; Kehao Zhao; HoMan Chan; Justin Gu; Heinz Gut; Wolfgang Fischle; Jürg Müller; Nicolas H. Thomä

The Polycomb repressive complex 2 (PRC2) confers transcriptional repression through histone H3 lysine 27 trimethylation (H3K27me3). Here, we examined how PRC2 is modulated by histone modifications associated with transcriptionally active chromatin. We provide the molecular basis of histone H3 N terminus recognition by the PRC2 Nurf55-Su(z)12 submodule. Binding of H3 is lost if lysine 4 in H3 is trimethylated. We find that H3K4me3 inhibits PRC2 activity in an allosteric fashion assisted by the Su(z)12 C terminus. In addition to H3K4me3, PRC2 is inhibited by H3K36me2/3 (i.e., both H3K36me2 and H3K36me3). Direct PRC2 inhibition by H3K4me3 and H3K36me2/3 active marks is conserved in humans, mouse, and fly, rendering transcriptionally active chromatin refractory to PRC2 H3K27 trimethylation. While inhibition is present in plant PRC2, it can be modulated through exchange of the Su(z)12 subunit. Inhibition by active chromatin marks, coupled to stimulation by transcriptionally repressive H3K27me3, enables PRC2 to autonomously template repressive H3K27me3 without overwriting active chromatin domains.


Cell | 2012

Step-Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery

Benjamin D. Towbin; Cristina González-Aguilera; Ragna Sack; Dimos Gaidatzis; Véronique Kalck; Peter Meister; Peter Askjaer; Susan M. Gasser

The factors that sequester transcriptionally repressed heterochromatin at the nuclear periphery are currently unknown. In a genome-wide RNAi screen, we found that depletion of S-adenosylmethionine (SAM) synthetase reduces histone methylation globally and causes derepression and release of heterochromatin from the nuclear periphery in Caenorhabditis elegans embryos. Analysis of histone methyltransferases (HMTs) showed that elimination of two HMTs, MET-2 and SET-25, mimics the loss of SAM synthetase, abrogating the perinuclear attachment of heterochromatic transgenes and of native chromosomal arms rich in histone H3 lysine 9 methylation. The two HMTs target H3K9 in a consecutive fashion: MET-2, a SETDB1 homolog, mediates mono- and dimethylation, and SET-25, a previously uncharacterized HMT, deposits H3K9me3. SET-25 colocalizes with its own product in perinuclear foci, in a manner dependent on H3K9me3, but not on its catalytic domain. This colocalization suggests an autonomous, self-reinforcing mechanism for the establishment and propagation of repeat-rich heterochromatin.


PLOS Genetics | 2010

DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC

Zachary A. Lewis; Keyur K. Adhvaryu; Shinji Honda; Anthony L. Shiver; Marijn Knip; Ragna Sack; Eric U. Selker

Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora.


Biochimica et Biophysica Acta | 2008

Direct protein-protein interaction of 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the endoplasmic reticulum lumen

Atanas G. Atanasov; Lyubomir G. Nashev; Laurent Gelman; Balázs Legeza; Ragna Sack; Reto Portmann; Alex Odermatt

Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1. The use of the 11beta-HSD1/11beta-HSD2 chimera indicates that the N-terminal 39 residues of 11beta-HSD1 are sufficient for interaction with H6PDH. An important role of the N-terminus was indicated further by the significantly stronger interaction of 11beta-HSD1 mutant Y18-21A with H6PDH compared to wild-type 11beta-HSD1. The protein-protein interaction and the involvement of the N-terminus of 11beta-HSD1 were confirmed by Far-Western blotting. Finally, fluorescence resonance energy transfer (FRET) measurements of HEK-293 cells expressing fluorescently labeled proteins provided evidence for an interaction between 11beta-HSD1 and H6PDH in intact cells. Thus, using three different methods, we provide strong evidence that the functional coupling between 11beta-HSD1 and H6PDH involves a direct physical interaction of the two proteins.


Nucleic Acids Research | 2013

The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function

Inga Loedige; Dimos Gaidatzis; Ragna Sack; Gunter Meister; Witold Filipowicz

TRIM-NHL proteins are conserved regulators of development and differentiation but their molecular function has remained largely elusive. Here, we report an as yet unrecognized activity for the mammalian TRIM-NHL protein TRIM71 as a repressor of mRNAs. We show that TRIM71 is associated with mRNAs and that it promotes translational repression and mRNA decay. We have identified Rbl1 and Rbl2, two transcription factors whose down-regulation is important for stem cell function, as TRIM71 targets in mouse embryonic stem cells. Furthermore, one of the defining features of TRIM-NHL proteins, the NHL domain, is necessary and sufficient to target TRIM71 to RNA, while the RING domain that confers ubiquitin ligase activity is dispensable for repression. Our results reveal strong similarities between TRIM71 and Drosophila BRAT, the best-studied TRIM-NHL protein and a well-documented translational repressor, suggesting that BRAT and TRIM71 are part of a family of mRNA repressors regulating proliferation and differentiation.


Nature Structural & Molecular Biology | 2017

Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates

Michael H. Hauer; Andrew Seeber; Vijender Singh; Raphael Thierry; Ragna Sack; Assaf Amitai; Mariya Kryzhanovska; Jan Eglinger; David Holcman; Tom Owen-Hughes; Susan M. Gasser

Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20–40% in response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.


Journal of Cell Science | 2014

TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms

Matthias A. Scharenberg; Benjamin E. Pippenger; Ragna Sack; Dominik Zingg; Jacqueline Ferralli; Susanne Schenk; Ivan Martin; Ruth Chiquet-Ehrismann

ABSTRACT Cellular transformation into myofibroblasts is a central physiological process enabling tissue repair. Its deregulation promotes fibrosis and carcinogenesis. TGF-&bgr; is the main inducer of the contractile gene program that drives myofibroblast differentiation from various precursor cell types. Crucial regulators of this transcriptional program are serum response factor (SRF) and its cofactor MKL1 (also known as MRTF-A). However, the exact mechanism of the crosstalk between TGF-&bgr; signaling and MKL1 remains unclear. Here, we report the discovery of a novel MKL1 variant/isoform, MKL1_S, transcribed from an alternative promoter and uncover a novel translation start for the published human isoform, MKL1_L. Using a human adipose-derived mesenchymal stem cell differentiation model, we show that TGF-&bgr; specifically upregulates MKL1_S during the initial phase of myofibroblast differentiation. We identified a functional N-terminal motif in MKL1_S that allows specific induction of a group of genes including the extracellular matrix (ECM) modifiers MMP16 and SPOCK3/testican-3. We propose that TGF-&bgr;-mediated induction of MKL1_S initiates progression to later stages of differentiation towards a stationary myofibroblast.


Nature Structural & Molecular Biology | 2012

Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation

Shinji Honda; Zachary A. Lewis; Kenji Shimada; Wolfgang Fischle; Ragna Sack; Eric U. Selker

DNA methylation, methylation of histone H3 at Lys9 (H3K9me3) and hypoacetylated histones are common molecular features of heterochromatin. Important details of their functions and inter-relationships remain unclear, however. In Neurospora crassa, H3K9me3 directs DNA methylation through a complex containing heterochromatin protein 1 (HP1) and the DNA methyltransferase DIM-2. We identified a distinct HP1 complex, HP1, CDP-2, HDA-1 and CHAP (HCHC), and found that it is responsible for silencing independently of DNA methylation. HCHC defects cause hyperacetylation of centromeric histones, greater accessibility of DIM-2 and hypermethylation of centromeric DNA. Loss of HCHC also causes mislocalization of the DIM-5 H3K9 methyltransferase at a subset of interstitial methylated regions, leading to selective DNA hypomethylation. We demonstrate that HP1 forms distinct DNA methylation and histone deacetylation complexes that work in parallel to assemble silent chromatin in N. crassa.


Genes & Development | 2016

Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress

Jérôme Poli; Christian-Benedikt Gerhold; Alessandro Tosi; Nicole Hustedt; Andrew Seeber; Ragna Sack; Franz Herzog; Philippe Pasero; Kenji Shimada; Karl-Peter Hopfner; Susan M. Gasser

Little is known about how cells ensure DNA replication in the face of RNA polymerase II (RNAPII)-mediated transcription, especially under conditions of replicative stress. Here we present genetic and proteomic analyses from budding yeast that uncover links between the DNA replication checkpoint sensor Mec1-Ddc2 (ATR-ATRIP), the chromatin remodeling complex INO80C (INO80 complex), and the transcription complex PAF1C (PAF1 complex). We found that a subset of chromatin-bound RNAPII is degraded in a manner dependent on Mec1, INO80, and PAF1 complexes in cells exposed to hydroxyurea (HU). On HU, Mec1 triggers the efficient removal of PAF1C and RNAPII from transcribed genes near early firing origins. Failure to evict RNAPII correlates inversely with recovery from replication stress: paf1Δ cells, like ino80 and mec1 mutants, fail to restart forks efficiently after stalling. Our data reveal unexpected synergies between INO80C, Mec1, and PAF1C in the maintenance of genome integrity and suggest a mechanism of RNAPII degradation that reduces transcription-replication fork collision.

Collaboration


Dive into the Ragna Sack's collaboration.

Top Co-Authors

Avatar

Susan M. Gasser

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Kenji Shimada

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew Seeber

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Matthias A. Scharenberg

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Ruth Chiquet-Ehrismann

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Gang Min Hur

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hee Sun Byun

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jang-Hee Hong

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Ho Seok

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jongsun Park

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge