Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rahmah Mohamed is active.

Publication


Featured researches published by Rahmah Mohamed.


Science | 2011

A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A.

A. Cruz-Migoni; Guillaume M. Hautbergue; Peter J. Artymiuk; Patrick J. Baker; Monika Bokori-Brown; Chung-Te Chang; Mark J. Dickman; Angela E. Essex-Lopresti; Sarah V. Harding; Nor Muhammad Mahadi; Laura E. Marshall; G.W. W. Mobbs; Rahmah Mohamed; Sheila Nathan; Sarah A. Ngugi; Catherine Ong; Wen Fong Ooi; Lynda J. Partridge; Helen L. Phillips; M.F. F. Raih; Sergey N. Ruzheinikov; Mitali Sarkar-Tyson; Svetlana E. Sedelnikova; Sophie J. Smither; Patrick Tan; Richard W. Titball; Stuart A. Wilson; David W. Rice

A toxin associated with a disease often observed in Vietnam veterans is identified and characterized. The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.


Vaccine | 2010

Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice.

Yu Ching Su; Kiew Lian Wan; Rahmah Mohamed; Sheila Nathan

Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.


Microbiology and Immunology | 1988

Resistance of Pseudomonas pseudomallei to Normal Human Serum Bactericidal Action

Ghazally Ismail; Nyonya Razak; Rahmah Mohamed; Noor Embi; Othman Omar

The effect of human normal serum (HNS) on Pseudomonas pseudomallei was determined. It is apparent from our data that the organism is resistant to the normal serum bactericidal mechanism. Ancillary experiments to confirm this serum‐resistant property of P. pseudomallei were done by examining the effects of growth phase conditions of the bacteria (i.e., logarithmic and stationary phases) and different buffered systems used as diluent in our bactericidal assay. Results obtained showed similar degree of resistance to serum bactericidal killing by 5 strains of the organisms tested. The possible survival advantage of serum‐resistant property to P. pseudomallei as bacterial pathogens known to invade the blood stream is discussed.


Mutation Research\/dna Repair Reports | 1983

DNA replication and repair in ataxia telangiectasia cells exposed to bleomycin

Clive Morris; Rahmah Mohamed; Martin F. Lavin

A marked increase in sensitivity to bleomycin was observed in two ataxia telangiectasia (AT) lymphoblastoid cell lines compared to that in cell lines from two normal individuals. This sensitivity was obtained at two different concentrations of bleomycin. While normal cells showed a rapid recovery of ability to divide, there was no indication of such a recovery in AT cells up to 120 h after bleomycin treatment. A similar level of breakage of DNA occurred in both cell types after incubation with bleomycin. The rate of repair of these breaks was also the same. DNA synthesis was found to be more resistant to bleomycin in AT cells than in control cells. The latter data are in keeping with results previously obtained using ionizing radiation.


Microbiology and Immunology | 1989

Inhibition of Macromolecular Synthesis in Cultured Macrophages by Pseudomonas pseudomallei Exotoxin

Rahmah Mohamed; Sheila Nathan; Noor Embi; Nyonya Razak; Ghazally Ismail

Pseudomonas pseudomallei exotoxin was found to be a potent inhibitor of protein and DNA synthesis in cultured macrophages. Inhibition of DNA synthesis occurred at toxin concentrations as low as 1–2 μg/ml and inhibition of 3H‐thymidine uptake was almost complete at concentrations of 8 μg/ml or more. A close correlation between cell damage and inhibition by DNA synthesis was observed. For protein synthesis, inhibition was obtained at much lower doses (0.06–2.0 μg/ml) of the toxin. At similar toxin concentrations, DNA synthesis was marginally affected. Further, it was shown that protein synthesis inhibition occurred almost immediately after incubation, reaching its maximal inhibitory effect of 70% after 6 hr. DNA synthesis, however, was minimally affected by a similar toxin concentration even after 10 hr of incubation. The inhibition of macromolecular synthesis in macrophages by P. pseudomallei exotoxin may be relevant to its modulatory effect on the host defense mechanism.


BMC Genomics | 2012

Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs

Jia Shiun Khoo; Shiao Fei Chai; Rahmah Mohamed; Sheila Nathan; Mohd Firdaus-Raih

BackgroundThe sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts.ResultsBy integrating several proven sRNA prediction programs into a computational pipeline, available Burkholderia spp. genomes were screened to identify sRNA gene candidates. Orthologous sRNA candidates were then identified via comparative analysis. From the total prediction, 21 candidates were found to have Rfam homologs. RT-PCR and sequencing of candidate sRNA genes of unknown functions revealed six putative sRNAs which were highly conserved in Burkholderia spp. and two that were unique to B. pseudomallei present in a normal culture conditions transcriptome. The validated sRNAs include potential cis-acting elements associated with the modulation of methionine metabolism and one B. pseudomallei-specific sRNA that is expected to bind to the Hfq protein.ConclusionsThe use of the pipeline developed in this study and subsequent comparative analysis have successfully aided in the discovery and shortlisting of sRNA gene candidates for validation. This integrated approach identified 29 B. pseudomallei sRNA genes - of which 21 have Rfam homologs and 8 are novel.


Biochemical and Biophysical Research Communications | 1987

A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells

Rahmah Mohamed; Surinder Singh; Sharad Kumar; Martin F. Lavin

DNA topoisomerase type I and II activities were determined by serial dilution in nuclear extracts from control and ataxia-telangiectasia lymphoblastoid cells. Topoisomerase I activity, assayed by relaxation of supercoiled plasmid DNA, was found to be approximately the same in both cell types. In order to remove interference from topoisomerase I, the activity of topoisomerase II was measured by the unknotting of knotted P4 phage DNA in the presence of ATP. The activity of topoisomerase II was markedly reduced in two ataxia-telangiectasia cell lines, AT2ABR and AT8ABR, compared to controls. This reduction in activity was detected with increasing concentration of protein and in time course experiments at a single protein concentration. A third cell line, AT3ABR, did not have a detectably lower activity of topoisomerase II when assayed under these conditions. The difference in topoisomerase II activity in the ataxia-telangiectasia cell lines examined may reflect to some extent the heterogeneity observed in this syndrome.


The Journal of Biochemistry, Molecular Biology and Biophysics | 2002

Phage display of recombinant antibodies toward Burkholderia pseudomallei exotoxin.

Sheila Nathan; Hongbin Li; Rahmah Mohamed; Noor Embi

We have used the phagemid pComb3H to construct recombinant phages displaying the single chain variable fragment (ScFv) towards exotoxin of Burkholderia pseudomallei. Variable heavy and light chain fragments were amplified from the hybridoma 6E6A8F3B line, with a wide spectrum of primers specific to mouse antibody genes. Through overlapping extension polymerase chain reaction, the heavy and light chain fragments were linked to form the ScFv which was subsequently cloned into the phage display vector and transformed into ER2537 cells to yield a complexity of 10(8) clones. The transformants were screened by four rounds of biopanning against the exotoxin and resulted in selective enrichment of exotoxin-binding antibodies by 301 fold. The phage pool from the final round of selection displayed antibodies of high-affinity to the exotoxin as demonstrated by ELISA. Several clones were selected randomly from this pool and analysed by restriction enzyme digestion, fingerprinting and sequencing. Restriction analysis confirmed that all clones carried a 700-800 bp insert whose sequences, in general, corresponded to that of mouse IgG. Fingerprinting profiles delineated the antibodies into two families with different CDR sequences.


BMC Infectious Diseases | 2013

Multiple-antigen ELISA for melioidosis - a novel approach to the improved serodiagnosis of melioidosis

Yuka Hara; Chui Yoke Chin; Rahmah Mohamed; S. D. Puthucheary; Sheila Nathan

BackgroundBurkholderia pseudomallei, the causative agent of melioidosis, is endemic to Southeast Asia and northern Australia. Clinical manifestations of disease are diverse, ranging from chronic infection to acute septicaemia. The current gold standard of diagnosis involves bacterial culture and identification which is time consuming and often too late for early medical intervention. Hence, rapid diagnosis of melioidosis is crucial for the successful management of melioidosis.MethodsThe study evaluated 4 purified B. pseudomallei recombinant proteins (TssD-5, Omp3, smBpF4 and Omp85) as potential diagnostic agents for melioidosis. A total of 68 sera samples from Malaysian melioidosis patients were screened for the presence of specific antibodies towards these proteins using enzyme-linked immunosorbent assay (ELISA). Sera from patients with various bacterial and viral infections but negative for B. pseudomallei, as well as sera from healthy individuals, were also included as non-melioidosis controls. The Mann Whitney test was performed to compare the statistical differences between melioidosis patients and the non-melioidosis controls.ResultsTssD-5 demonstrated the highest sensitivity of 71% followed by Omp3 (59%), smBpF4 (41%) and Omp85 (19%). All 4 antigens showed equally high specificity (89-96%). A cocktail of all 4 antigens resulted in slightly reduced sensitivity of 65% but improved specificity (99%). Multiple-antigen ELISA provided improved sensitivity of 88.2% whilst retaining good specificity (96%). There was minimal reactivity with sera from healthy individuals proposing the utility of these antigens to demarcate diseased from non-symptomatic individuals in an endemic country.ConclusionsTssD-5 demonstrated high detection sensitivity and specificity and the results were obtained within a few hours compared to time consuming culture and IFAT methods commonly used in a clinical setting. The use of multiple-antigens resulted in improved sensitivity (88.2%) whilst maintaining superior specificity. These data highlight the use of TssD-5 and other recombinant antigens tested in this study as potential serodiagnostic agents for melioidosis.


Parasitology | 2010

Eimeria tenella glucose-6-phosphate isomerase: molecular characterization and assessment as a target for anti-coccidial control.

S.-S. Loo; Damer P. Blake; Adura Mohd-Adnan; Rahmah Mohamed; Kiew Lian Wan

Limitations with current chemotherapeutic and vaccinal control of coccidiosis caused by Eimeria species continue to prompt development of novel controls, including the identification of new drug targets. Glucose-6-phosphate isomerase (G6-PI) has been proposed as a valid drug target for many protozoa, although polymorphism revealed by electrophoretic enzyme mobility has raised doubts for Eimeria. In this study we identified and sequenced the Eimeria tenella G6-PI orthologue (EtG6-PI) from the reference Houghton strain and confirmed its position within the prevailing taxonomic hierarchy, branching with the Apicomplexa and Plantae, distinct from the Animalia including the host, Gallus gallus. Comparison of the deduced 1647 bp EtG6-PI coding sequence with the 9016 bp genomic locus revealed 15 exons, all of which obey the intron-AG-/exon/-GT-intron splicing rule. Comparison with the Weybridge and Wisconsin strains revealed the presence of 33 single nucleotide polymorphisms (SNPs) and 14 insertion/deletion sites. Three SNPs were exonic and all yielded non-synonymous substitutions. Preliminary structural predictions suggest little association between the coding SNPs and key G6-PI catalytic residues or residues thought to be involved in the coordination of the G6-PIs substrate phosphate group. Thus, the significant polymorphism from its host orthologue and minimal intra-specific polymorphism suggest G6-PI remains a valid anti-coccidial drug target.

Collaboration


Dive into the Rahmah Mohamed's collaboration.

Top Co-Authors

Avatar

Sheila Nathan

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mohd Firdaus Raih

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Noor Embi

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nor Muhammad Mahadi

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Kiew Lian Wan

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mohd Firdaus-Raih

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ghazally Ismail

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hafiza Aida Ahmad

National University of Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge