Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raji Sundaramoorthi is active.

Publication


Featured researches published by Raji Sundaramoorthi.


Cancer Cell | 2009

AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.

Thomas O'Hare; William C. Shakespeare; Xiaotian Zhu; Christopher A. Eide; Victor M. Rivera; Frank Wang; Lauren T. Adrian; Tianjun Zhou; Wei Sheng Huang; Qihong Xu; Chester A. Metcalf; Jeffrey W. Tyner; Marc Loriaux; Amie S. Corbin; Scott Wardwell; Yaoyu Ning; Jeffrey Keats; Yihan Wang; Raji Sundaramoorthi; Mathew Thomas; Dong Zhou; Joseph Snodgrass; Lois Commodore; Tomi K. Sawyer; David C. Dalgarno; Michael W. Deininger; Brian J. Druker; Tim Clackson

Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL(T315I) mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL(T315I)-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.


Journal of Medicinal Chemistry | 2010

Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant.

Wei-Sheng Huang; Chester A. Metcalf; Raji Sundaramoorthi; Yihan Wang; Dong Zou; R. Mathew Thomas; Xiaotian Zhu; Lisi Cai; David Wen; Shuangying Liu; Jan Antoinette C. Romero; Jiwei Qi; Ingrid Chen; Geetha Banda; Scott P. Lentini; Sasmita Das; Qihong Xu; Jeff Keats; Frank Wang; Scott Wardwell; Yaoyu Ning; Joseph Snodgrass; Marc I. Broudy; Karin Russian; Tianjun Zhou; Lois Commodore; Narayana I. Narasimhan; Qurish K. Mohemmad; John Iuliucci; Victor M. Rivera

In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.


Molecular Cancer Therapeutics | 2005

AP23846, a novel and highly potent Src family kinase inhibitor, reduces vascular endothelial growth factor and interleukin-8 expression in human solid tumor cell lines and abrogates downstream angiogenic processes

Justin M. Summy; Jose G. Trevino; Donald P. Lesslie; Cheryl H. Baker; William C. Shakespeare; Yihan Wang; Raji Sundaramoorthi; Chester A. Metcalf; Jeffrey Keats; Tomi K. Sawyer; Gary E. Gallick

c-Src is frequently activated in human malignancies, including colon, breast, and pancreatic carcinomas. Several recent studies have shown that activation of Src family kinases leads to tumor progression and metastasis by increasing cellular migration and invasion, promoting cell growth and survival, and deregulating expression of proangiogenic molecules. Therefore, selective inhibitors of Src are being developed for cancer therapy. In this study, we characterize the biological effects of the novel ATP-based Src family kinase inhibitor, AP23846, in tumor cells with high Src activity. As a lead compound, AP23846 is a potent c-Src kinase inhibitor (IC50 ∼0.5 nmol/L in vitro, ∼10-fold more potent than PP2, the most widely used commercially available Src family kinase inhibitor). At concentrations of 1 μmol/L, AP23846 led to complete Src inhibition for 48 hours in cells. No cytotoxicity was observed under these conditions, although proliferation rates were slower. Therefore, this was an excellent inhibitor to examine Src-regulated signaling pathways in tumor cells. AP23846 reduced cellular migration, vascular endothelial growth factor, and interleukin-8 in a dose-dependent fashion in pancreatic adenocarcinoma cells grown in vitro. Correspondingly, cell culture supernatants from L3.6pl pancreatic adenocarcinoma cells pretreated with AP23846 failed to promote migration of hepatic endothelial cells in vitro and failed to support angiogenesis into gel foams implanted s.c. in mice in vivo. These results suggest that Src inhibitors affect biological properties of tumor progression and may be useful as cancer therapeutic agents in more advanced disease. [Mol Cancer Ther 2005;4(12):1900–11]


Chemical Biology & Drug Design | 2006

Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds.

David C. Dalgarno; Thilo Stehle; Surinder S. Narula; Pierre Schelling; Marie Rose van Schravendijk; Susan Adams; Lawrence J. Andrade; Jeff Keats; Mary K. Ram; Lei Jin; Trudy Grossman; Ian A. MacNeil; Chester A. Metcalf; William C. Shakespeare; Yihan Wang; Terry Keenan; Raji Sundaramoorthi; Regine S. Bohacek; Manfred Weigele; Tomi K. Sawyer

The tyrosine kinase pp60src (Src) is the prototypical member of a family of proteins that participate in a broad array of cellular signal transduction processes, including cell growth, differentiation, survival, adhesion, and migration. Abnormal Src family kinase (SFK) signaling has been linked to several disease states, including osteoporosis and cancer metastases. Src has thus emerged as a molecular target for the discovery of small‐molecule inhibitors that regulate Src kinase activity by binding to the ATP pocket within the catalytic domain. Here, we present crystal structures of the kinase domain of Src in complex with two purine‐based inhibitors: AP23451, a small‐molecule inhibitor designed to inhibit Src‐dependent bone resorption, and AP23464, a small‐molecule inhibitor designed to inhibit the Src‐dependent metastatic spread of cancer. In each case, a trisubstituted purine template core was elaborated using structure‐based drug design to yield a potent Src kinase inhibitor. These structures represent early examples of high affinity purine‐based Src family kinase–inhibitor complexes, and they provide a detailed view of the specific protein–ligand interactions that lead to potent inhibition of Src. In particular, the 3‐hydroxyphenethyl N9 substituent of AP23464 forms unique interactions with the protein that are critical to the picomolar affinity of this compound for Src. The comparison of these new structures with two relevant kinase–inhibitor complexes provides a structural basis for the observed kinase inhibitory selectivity. Further comparisons reveal a concerted induced‐fit movement between the N‐ and C‐terminal lobes of the kinase that correlates with the affinity of the ligand. Binding of the most potent inhibitor, AP23464, results in the largest induced‐fit movement, which can be directly linked to interactions of the hydrophenethyl N9 substituent with a region at the interface between the two lobes. A less pronounced induced‐fit movement is also observed in the Src–AP23451 complex. These new structures illustrate how the combination of structural, computational, and medicinal chemistry can be used to rationalize the process of developing high affinity, selective tyrosine kinase inhibitors as potential therapeutic agents.


Bioorganic & Medicinal Chemistry Letters | 2003

Bone-Targeted 2,6,9-Trisubstituted Purines: Novel Inhibitors of Src Tyrosine Kinase for the Treatment of Bone Diseases

Yihan Wang; Chester A. Metcalf; William C. Shakespeare; Raji Sundaramoorthi; Terence P. Keenan; Regine S. Bohacek; Marie Rose van Schravendijk; Shiela M. Violette; Surinder S. Narula; David C. Dalgarno; Chad Haraldson; Jeffrey Keats; Shuenn Liou; Ukti N. Mani; Selvi Pradeepan; Mary K. Ram; Susan Adams; Manfred Weigele; Tomi K. Sawyer

Novel bone-targeted 2,6,9-trisubstituted purine template-based inhibitors of Src tyrosine kinase are described. Drug design studies of known purine compounds revealed that both positions-2 and -6 were suitable for incorporating bone-seeking moieties. A variety of bone-targeting groups with different affinity to hydroxyapatite were utilized in the study. Compound 3d was determined to be a potent Src inhibitor and was quite selective against a panel of other protein kinases.


Clinical Cancer Research | 2006

Src Inhibitors in Metastatic Bone Disease

Brendan F. Boyce; Lianping Xing; Zhenqiang Yao; Teruhito Yamashita; William C. Shakespeare; Yihan Wang; Chester A. Metcalf; Raji Sundaramoorthi; David C. Dalgarno; John Iuliucci; Tomi K. Sawyer

Src tyrosine kinase was the first gene product shown to have an essential function in bone using recombinant DNA technology after its expression was knocked out in mice ∼15 years ago. Since then, our understanding of the regulation of bone catabolism has advanced significantly with the identification of other key enzymes that regulate osteoclast formation, activation, and survival after their knockout in mice or recognition of mutations in them in humans. This led to the discovery or development of specific inhibitors of some of these key enzymes, including Src, as proof-of-concept lead compounds or potential clinical candidates for the prevention of diseases associated with increased bone resorption, such as osteoporosis and metastatic bone disease. Although bisphosphonates have been prescribed with proven and improving efficacy for the prevention of bone loss for >30 years, adverse effects, such as upper gastrointestinal tract symptoms, and the requirement to take them at least 2 hours before food have limited patient compliance. Thus, with growing knowledge of the pathways regulating osteoclast function and the appreciation that some of these are active also in tumor cells, drug companies have made efforts to identify small-molecular lead compounds for development into new therapeutic agents for the prevention of bone loss with efficacy that matches or supersedes that of bisphosphonates. In this article, we review our current understanding of the signaling pathways that regulate osteoclast formation, activation, and survival with specific reference to the role of Src tyrosine kinase and downstream signaling and highlight in a variety of models of increased bone resorption the effects of Src kinase inhibitors that have been targeted to bone to limit potential adverse effects on other cells.


Journal of Medicinal Chemistry | 2009

9-(Arenethenyl)purines as Dual Src/Abl Kinase Inhibitors Targeting the Inactive Conformation: Design, Synthesis, and Biological Evaluation

Wei-Sheng Huang; Xiaotian Zhu; Yihan Wang; Mohammad Azam; David Wen; Raji Sundaramoorthi; R. Mathew Thomas; Shuangying Liu; Geetha Banda; Scott P. Lentini; Sasmita Das; Qihong Xu; Jeff Keats; Frank Wang; Scott Wardwell; Yaoyu Ning; Joseph Snodgrass; Marc I. Broudy; Karin Russian; George Q. Daley; John Iuliucci; David C. Dalgarno; Tim Clackson; Tomi K. Sawyer; William C. Shakespeare

A novel series of potent dual Src/Abl kinase inhibitors based on a 9-(arenethenyl)purine core has been identified. Unlike traditional dual Src/Abl inhibitors targeting the active enzyme conformation, these inhibitors bind to the inactive, DFG-out conformation of both kinases. Extensive SAR studies led to the discovery of potent and orally bioavailable inhibitors, some of which demonstrated in vivo efficacy. Once-daily oral administration of inhibitor 9i (AP24226) significantly prolonged the survival of mice injected intravenously with wild type Bcr-Abl expressing Ba/F3 cells at a dose of 10 mg/kg. In a separate model, oral administration of 9i to mice bearing subcutaneous xenografts of Src Y527F expressing NIH 3T3 cells elicited dose-dependent tumor shrinkage with complete tumor regression observed at the highest dose. Notably, several inhibitors (e.g., 14a, AP24163) exhibited modest cellular potency (IC50 = 300-400 nM) against the Bcr-Abl mutant T315I, a variant resistant to all currently marketed therapies for chronic myeloid leukemia.


Bioorganic & Medicinal Chemistry Letters | 2003

Bone-Targeted Src kinase inhibitors: novel pyrrolo- and pyrazolopyrimidine analogues

Raji Sundaramoorthi; William C. Shakespeare; Terence P. Keenan; Chester A. Metcalf; Yihan Wang; Ukti N. Mani; Merry Taylor; Shuangying Liu; Regine S. Bohacek; Surinder S. Narula; David C. Dalgarno; Marie Rose Van Schravandijk; Sheila M. Violette; Shuenn Liou; Susan Adams; Mary K. Ram; Jeffrey Keats; Manfred Weigele; Tomi K. Sawyer

Src tyrosine kinase is a therapeutic target for bone diseases that has been validated by gene knockout studies. Furthermore, in vitro cellular studies implicate that Src has a positive regulatory role in osteoclasts and a negative regulatory role in osteoblasts. The potential use of Src inhibitors for osteoporosis therapy has been previously shown by novel bone-targeted ligands of the Src SH2 (e.g., AP22408) and non-bone-targeted, ATP-based inhibitors of Src kinase. Significant to this study, compounds 2-12 exemplify novel analogues of known pyrrolopyrimidine and pyrazolopyrimidine template-based Src kinase inhibitors that incorporate bone-targeting group modifications designed to provide tissue (bone) selectivity and diminished side effects. Accordingly, we report here the structure-based design, synthetic chemistry and biological testing of these compounds and proof-of-concept studies thereof.


Bioorganic & Medicinal Chemistry Letters | 2008

Novel N9-arenethenyl purines as potent dual Src/Abl tyrosine kinase inhibitors.

Yihan Wang; William C. Shakespeare; Wei-Sheng Huang; Raji Sundaramoorthi; Scott P. Lentini; Sasmita Das; Shuangying Liu; Geeta Banda; David Wen; Xiaotian Zhu; Qihong Xu; Jeffrey Keats; Frank Wang; Scott Wardwell; Yaoyu Ning; Joseph Snodgrass; Mark I. Broudy; Karin Russian; David C. Dalgarno; Tim Clackson; Tomi K. Sawyer

Novel N(9)-arenethenyl purines, optimized potent dual Src/Abl tyrosine kinase inhibitors, are described. The key structural feature is a trans vinyl linkage at N(9) on the purine core which projects hydrophobic substituents into the selectivity pocket at the rear of the ATP site. Their synthesis was achieved through a Horner-Wadsworth-Emmons reaction of N(9)-phosphorylmethylpurines and substituted benzaldehydes or Heck reactions between 9-vinyl purines and aryl halides. Most compounds are potent inhibitors of both Src and Abl kinase, and several possess good oral bioavailability.


Annals of the New York Academy of Sciences | 2006

Future Anti-Catabolic Therapeutic Targets in Bone Disease

Brendan F. Boyce; Lianping Xing; Zhenqiang Yao; William C. Shakespeare; Yihan Wang; Chester A. Metcalf; Raji Sundaramoorthi; David C. Dalgarno; John Iuliucci; Tomi K. Sawyer

Abstract:  Understanding of the regulation of bone catabolism has advanced significantly over the past two decades with the identification of key enzymes that regulate osteoclast formation, activation, and survival following their knockout in mice or recognition of mutations in humans. This led to the discovery of specific inhibitors of some of these key enzymes as proof‐of‐concept lead compounds or potential clinical candidates for the prevention of osteoporosis and other diseases associated with increased bone resorption. Bisphosphonates have been the major therapeutic agents prescribed for the prevention of bone loss in a variety of pathologic conditions for over 30 years. More potent amino bisphosphonates have increased efficacy than earlier drugs, but side effects such as upper gastrointestinal symptoms and the requirement to take them at least 2 h before food have limited patient compliance. This, coupled with the growing knowledge of the pathways regulating osteoclast function, has driven efforts to identify small molecular lead compounds that could be developed into new therapeutic agents with efficacy that matches or supersedes that of bisphosphonates for the prevention of bone loss. In this article, we review briefly the effects of specific inhibitors of bone resorption that have been developed to date and highlight in a variety of models of increased bone resorption the effects of Src kinase inhibitors that have been targeted to bone to limit potential unwanted side effects on other cells.

Collaboration


Dive into the Raji Sundaramoorthi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge