Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raju Padiya is active.

Publication


Featured researches published by Raju Padiya.


Pharmacological Research | 2012

Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats

Pankaj K. Bagul; Harish Middela; Saidulu Matapally; Raju Padiya; Tanmay Bastia; Kuncha Madhusudana; B. Raghunath Reddy; Sumana Chakravarty; Sanjay K. Banerjee

Metabolic syndrome and oxidative stress are common complications of type 2 diabetes mellitus. The present study was designed to determine whether resveratrol, a widely used nutritional supplement, can improve insulin sensitivity, metabolic complication as well as hepatic oxidative stress in fructose-fed rats. Male Sprague Dawley rats (180-200 g) were divided into four groups with 8 animals each. Fructose-fed insulin resistant group (Dia) animals were fed 65% fructose (Research diet, USA) for a period of 8 weeks, whereas control group (Con) animals were fed 65% cornstarch (Research Diet, USA). Resveratrol, 10 mg/kg/day (Dia+Resv) or metformin 300 mg/kg/day (Dia+Met) were administered orally to the 65% fructose-fed rats for 8 weeks. At the end of the feeding schedule, Dia group had insulin resistance along with increased blood glucose, triglyceride, uric acid and nitric oxide (NO) levels. Significant (p<0.05) increase in hepatic TBARS and conjugated dienes, and significant (p<0.05) decrease in hepatic SOD and vitamin C was observed in Dia group compared to Con group. Administration of metformin or resveratrol significantly (p<0.05) normalized all the altered metabolic parameters. However, a marked insulin sensitizing action was only observed in the Dia+Resv group. Similarly, while metformin administration failed to normalize the increased TBARS levels and decreased SOD activity, resveratrol showed a more promising effect of all oxidative stress parameters measured in the present study. Attenuation of hepatic oxidative stress in fructose-fed rat liver after resveratrol administration was associated with significant (p<0.05) increase in nuclear level of NRF2 compared with other groups. The present study demonstrates that resveratrol is more effective than metformin in improving insulin sensitivity, and attenuating metabolic syndrome and hepatic oxidative stress in fructose-fed rats.


Nutrition & Metabolism | 2011

Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats

Raju Padiya; Tarak Nath Khatua; Pankaj K. Bagul; Madhusudana Kuncha; Sanjay K. Banerjee

BackgroundType 2 diabetes mellitus, characterized by peripheral insulin resistance, is a major lifestyle disorder of the 21st Century. Raw garlic homogenate has been reported to reduce plasma glucose levels in animal models of type 1 diabetes mellitus. However, no specific studies have been conducted to evaluate the effect of raw garlic on insulin resistance or type 2 diabetes mellitus. This study was designed to investigate the effect of raw garlic on fructose induced insulin resistance, associated metabolic syndrome and oxidative stress in diabetic rats.MethodsMale Sprague Dawley rats weighing 200-250 gm body weight were divided into 3 groups (n = 7 per group) and fed diet containing 65% cornstarch (Control group) and 65% fructose (Diabetic group) for 8 weeks. The third group (Dia+Garl group) was fed both 65% fructose and raw garlic homogenate (250 mg/kg/day) for 8 weeks. Whole garlic cloves were homogenized with water to make a fresh paste each day.ResultsAt the end of 8 weeks, serum glucose, insulin, triglyceride and uric acid levels, as well as insulin resistance, as measured by glucose tolerance test, were significantly (p < 0.01) increased in fructose fed rats (Diabetic group) when compared to the cornstarch fed (Control) rats. Administration of raw garlic to fructose fed rats (Dia+Garl group) significantly (p < 0.05) reduced serum glucose, insulin, triglyceride and uric acid levels, as well as insulin resistance when compared with fructose fed rats. Garlic also normalised the increased serum levels of nitric oxide (NO) and decreased levels of hydrogen sulphide (H2S) after fructose feeding. Although body weight gain and serum glycated haemoglobin levels of fructose fed rats (Diabetic group) were not significantly different from control rats, significant (p < 0.05) reduction of these parameters was observed in fructose fed rats after garlic administration (Dia+Garl group). Significant (p < 0.05) increase in TBARS and decrease in GSH was observed in diabetic liver. Catalase was not significantly affected in any of the groups. Administration of raw garlic homogenate normalised both hepatic TBARS and GSH levels.ConclusionsOur study demonstrates that raw garlic homogenate is effective in improving insulin sensitivity while attenuating metabolic syndrome and oxidative stress in fructose-fed rats.


PLOS ONE | 2014

Garlic Attenuates Cardiac Oxidative Stress via Activation of PI3K/AKT/Nrf2-Keap1 Pathway in Fructose-Fed Diabetic Rat

Raju Padiya; Debabrata Chowdhury; Roshan M. Borkar; R. Srinivas; Manika Pal Bhadra; Sanjay K. Banerjee

Background Cardiovascular complication due to diabetes has remained a major cause of death. There is an urgent need to intervene the cardiac complications in diabetes by nutritional or pharmacological agents. Thus the present study was designed to find out the effectiveness of garlic on cardiac complications in insulin-resistant diabetic rats. Methods and Results SD rats were fed high fructose (65%) diet alone or along with raw garlic homogenate (250 mg/kg/day) or nutrient-matched (65% corn starch) control diet for 8 weeks. Fructose-fed diabetic rats showed cardiac hypertrophy, increased NFkB activity and increased oxidative stress. Administration of garlic significantly decreased (p<0.05) cardiac hypertrophy, NFkB activity and oxidative stress. Although we did not observe any changes in myocardial catalase, GSH and GPx in diabetic heart, garlic administration showed significant (p<0.05) increase in all three antioxidant/enzymes levels. Increased endogenous antioxidant enzymes and gene expression in garlic treated diabetic heart are associated with higher protein expression of Nrf2. Increased myocardial H2S levels, activation of PI3K/Akt pathway and decreased Keap levels in fructose-fed heart after garlic administration might be responsible for higher Nrf2 levels. Conclusion Our study demonstrates that raw garlic homogenate is effective in reducing cardiac hypertrophy and fructose-induced myocardial oxidative stress through PI3K/AKT/Nrf2-Keap1 dependent pathway.


Recent Patents on Food, Nutrition & Agriculture | 2013

Garlic as an anti-diabetic agent: recent progress and patent reviews.

Raju Padiya; Sanjay K. Banerjee

This article reviews recent literature on the usage and relevance of garlic and its bioactive components in controlling diabetes and diabetes-associated pathologies; and also updates recent patents on the subject. Antidiabetic effect of garlic is well documented even in ancient medical literature. Garlic and its active ingredients have been extensively studied for their antidiabetic efficacies in either experimentally induced or genetic animal models of diabetes. Human studies are also available where hypoglycemic effect of garlic was reported. The beneficial effects of garlic are mainly attributed to the presence of volatile sulfur compounds like alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl sulfide, S-allyl cysteine, ajoene and allyl mercaptan. Garlic and garlic extracts have been shown to be effective in reducing insulin resistance. Therefore, considering the importance of garlic in controlling diabetic complications, several preparations and food processes containing garlic have been patented. This review discusses some of the recent progresses made in this field and consolidates the results.


Nitric Oxide | 2012

Garlic provides protection to mice heart against isoproterenol-induced oxidative damage: Role of nitric oxide

Tarak Nath Khatua; Raju Padiya; Santosh Karnewar; Madhusudana Kuncha; Sachin B. Agawane; Srigiridhar Kotamraju; Sanjay K. Banerjee

Garlic has been widely recognized as a cardioprotective agent. However, the molecular mechanism of its cardioprotective effects is not well established. Here we hypothesized that aqueous garlic homogenate may mediate cardioprotection via nitric oxide (NO). Mice were fed with saline and aqueous garlic homogenate (250 and 500 mgkg(-1)day(-1) orally) for 30 days. In another set of experiment, mice were pre-treated with saline, aqueous garlic homogenate (AGH) (250 mgkg(-1)day(-1) for 30 days), and AGH (30 days) along with L-NAME (20 mgkg(-1)day(-1) i.p. for last 7 days) before inducing acute myocardial infarction by isoproterenol (s.c. injection of isoproterenol 150 mgkg(-1)day(-1) for 2 days) and sacrificed after 48 h. Dose dependent increase in serum NO level was observed after garlic 250 and 500 mgkg(-1) dose feeding. While no change in serum SGPT and SGOT level, a significant decrease in serum LDH level was observed after garlic feeding. Garlic-induced NO formation was further confirmed in human aortic endothelial cells (HAEC). Administration of isoproterenol caused a significant decrease in endogenous antioxidants i.e., myocardial catalase, GSH and GPx activity, and mitochondrial enzyme activities like citrate synthase and β hydroxyacyl CoA dehydrogenase. All those deleterious cardiac changes induced by isoproterenol were significantly attenuated by garlic homogenate. However this beneficial effect of garlic was blunted when garlic was administered with L-NAME, a nonspecific inhibitor of nitric oxide synthase (NOS). Further, a significant increase in myocardial TBARS and decrease in total antioxidant activity was observed in L-NAME treated group compared to isoproterenol treated group. Administration of L-NAME in mice from control group lowered serum and cardiac NO levels without any change of oxidative stress parameters. In conclusion, our study provides novel evidence that garlic homogenate is protective in myocardial infarction via NO-signaling pathway in mice.


Rapid Communications in Mass Spectrometry | 2012

In vivo metabolic investigation of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry in combination with online hydrogen/deuterium exchange experiments.

B. Raju; M. Ramesh; Roshan M. Borkar; R. Srinivas; Raju Padiya; Sanjay K. Banerjee

RATIONALE Tuberculosis is a leading cause of death from an infectious disease and moxifloxacin is an effective drug as compared to other fluoroquinolones. To date only two metabolites of the drug are known. Therefore, the present study on characterization of hitherto unknown in vivo metabolites of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is undertaken. METHODS In vivo metabolites of moxifloxacin have been identified and characterized by using LC/ESI-MS/MS in combination with an online hydrogen/deuterium (H/D) exchange technique. To identify in vivo metabolites, blood, urine and faeces samples were collected after oral administration of moxifloxacin to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation, liquid-liquid extraction followed by solid-phase extraction and LC/MS/MS analysis. RESULTS A total of nine phase I and ten phase II metabolites of moxifloxacin have been identified in urine samples including N-sulphated, glucuronide and hydroxylated metabolites which are also observed in plasma samples. In faeces samples, only the N-sulphated metabolite is observed. The structures of metabolites have been elucidated based on fragmentation patterns, accurate mass measurements and online H/D exchange LC/MS/MS experiments. Online H/D exchange experiments are used to support the identification and structural characterization of drug metabolites. CONCLUSIONS A total of 19 in vivo metabolites of moxifloxacin have been characterized using LC/ESI-MS/MS in combination with accurate mass measurements and online H/D exchange experiments. The main phase I metabolites of moxifloxacin are hydroxylated, decarbonylated, desmethylated and desmethylhydroxylated metabolites which undergo subsequent phase II glucuronidation pathways.


Biomedical Chromatography | 2012

Determination of gemifloxacin on dried blood spots by hydrophilic interaction liquid chromatography with fluorescence detector: application to pharmacokinetics in rats

R. Nageswara Rao; Ch. Gangu Naidu; K. Guru Prasad; Raju Padiya; Sachin B. Agwane

A highly selective, sensitive and rapid hydrophilic liquid interaction chromatographic method was developed and validated for determination of gemifloxacin on dried blood spots. The chromatographic separation was achieved on a reversed-phase zwitterionic hydrophilic interaction liquid chromatographic ZIC®HILIC-C₁₈ (4.6 × 100 mm; 5 µm) column using acetonitrile-10 mM ammonium acetate (pH 3.5; 80:20, v/v) as a mobile phase in an isocratic elution mode at a flow rate 0.6 mL/min at 27 °C. An on-line fluorescence detector set at excitation and emission wavelengths of 269 and 393 nm, respectively was used for monitoring column eluents. Ciprofloxacin was used as an internal standard. The method was validated for accuracy, precision, linearity and selectivity by design of experiments following ICH guidelines. The assay exhibited a linear range of 25-5000 ng/mL for gemifloxacin on dried blood spots. The lower limit of detection was found to be 10 ng/mL. The intra- and inter-assay coefficients of variation did not exceed 7.4% deviation of the nominal concentration. The recovery of GFX from dried blood spots was >95.0% and its stability was excellent with no evidence of degradation during sample processing for at least 3 months storage in a freezer at -20 °C.


Frontiers in Pharmacology | 2016

Garlic and Resveratrol Attenuate Diabetic Complications, Loss of β-Cells, Pancreatic and Hepatic Oxidative Stress in Streptozotocin-Induced Diabetic Rats

Gagandeep Kaur; Raju Padiya; Ramu Adela; Uday Kumar Putcha; G. S. Reddy; Bommana Raghunath Reddy; K. P. Kumar; Sumana Chakravarty; Sanjay K. Banerjee

The study was aimed at finding the effect of garlic and resveratrol on loss of β-cells and diabetic complication in streptozotocin (STZ)-induced Type-I diabetic rats. Rats were injected with single dose STZ (50 mg/kg, i.p.) for induction of type 1 diabetes (Dia) and compared with control group. Rats from third (Dia+Gar), fourth (Dia+Resv), and fifth (Dia+Met) groups were fed raw garlic homogenate (250 mg/kg/day), resveratrol (25 mg/kg/day), and metformin (500 mg/kg/day) orally, respectively, for a period of 4 weeks. Diabetic group had decreased serum insulin and hydrogen sulfide levels along with increased blood glucose and glycated hemoglobin, triglyceride, uric acid, and nitric oxide levels. Significant (p < 0.05) increase in pancreatic and hepatic TBARS, conjugated dienes, nitric oxide, and AGE level and significant (p < 0.05) decrease in SOD, catalase, H2S, GSH level were observed in diabetic group. Administration of garlic, resveratrol, and metformin significantly (p < 0.05) normalized most of the altered metabolic and oxidative stress parameters as well as histopathological changes. Administration of garlic, resveratrol, and metformin in diabetic rat decreases pancreatic β-cell damage and hepatic injury. Our data concluded that administration of garlic showed more promising effect in terms of reducing oxidative stress and pathological changes when compared to resveratrol and metformin groups.


Biomedical Chromatography | 2012

Development and validation of liquid chromatography–mass spectrometric method for simultaneous determination of moxifloxacin and ketorolac in rat plasma: application to pharmacokinetic study

B. Raju; M. Ramesh; Roshan M. Borkar; Raju Padiya; Sanjay K. Banerjee; R. Srinivas

A highly sensitive, selective and rapid liquid chromatography-electrospray ionization mass spectrometry (LC-MS) method has been developed and validated for simultaneous determination of moxifloxacin (MFX) and ketorolac (KTC) in rat plasma. Gemifloxacin (GFX) was used as an internal standard (IS). A simple protein precipitation method was used for the extraction of analytes from rat plasma. Effective chromatographic separation of MFX, KTC and GFX was achieved on a Kromasil C(18) column (100 × 4.6 mm, 5 µm) using a mobile phase consisting of acetonitrile-10 mm ammonium acetate (pH 2.5)-0.1% formic acid (50:25:25) in an isocratic elution, followed by detection with positive ion electrospray ionization mass spectrometry using target ions of [M + H](+) at m/z 402 for MFX, m/z 256 for KTC and m/z 390 for GFX in selective ion recording mode. The method was validated over the calibration range of 5-100 ng/mL for MFX and 10-6000 ng/mL for KTC. The method demonstrated good performances in terms of intra- and inter-day precision (0.97-5.33%) and accuracy (93.91-101.58%) for both MFX and KTC, including lower and upper limits of quantification. The recoveries from spiked control samples were >75% for MFX and >79% for KTC. The matrix effect was found to be negligible and the stability data were within acceptable limits. Further, the method was also successfully applied to a single-dose pharmacokinetic study in rats. This method can be extended to measure plasma concentrations of both drugs in human to understand drug interaction and adverse effects.


Journal of Mass Spectrometry | 2012

Identification and structural characterization of in vivo metabolites of ketorolac using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS)

B. Raju; M. Ramesh; Roshan M. Borkar; Raju Padiya; Sanjay K. Banerjee; R. Srinivas

In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI-HR-MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid-phase extraction and then subjected to LC/HR-MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O-sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC-MS/MS and MS(n) experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways.

Collaboration


Dive into the Raju Padiya's collaboration.

Top Co-Authors

Avatar

R. Nageswara Rao

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

R. Srinivas

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Roshan M. Borkar

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

B. Raju

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Ch. Gangu Naidu

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

M. Ramesh

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Pankaj K. Bagul

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Madhusudana Kuncha

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Sumana Chakravarty

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Tarak Nath Khatua

Indian Institute of Chemical Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge