Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roshan M. Borkar is active.

Publication


Featured researches published by Roshan M. Borkar.


PLOS ONE | 2014

Garlic Attenuates Cardiac Oxidative Stress via Activation of PI3K/AKT/Nrf2-Keap1 Pathway in Fructose-Fed Diabetic Rat

Raju Padiya; Debabrata Chowdhury; Roshan M. Borkar; R. Srinivas; Manika Pal Bhadra; Sanjay K. Banerjee

Background Cardiovascular complication due to diabetes has remained a major cause of death. There is an urgent need to intervene the cardiac complications in diabetes by nutritional or pharmacological agents. Thus the present study was designed to find out the effectiveness of garlic on cardiac complications in insulin-resistant diabetic rats. Methods and Results SD rats were fed high fructose (65%) diet alone or along with raw garlic homogenate (250 mg/kg/day) or nutrient-matched (65% corn starch) control diet for 8 weeks. Fructose-fed diabetic rats showed cardiac hypertrophy, increased NFkB activity and increased oxidative stress. Administration of garlic significantly decreased (p<0.05) cardiac hypertrophy, NFkB activity and oxidative stress. Although we did not observe any changes in myocardial catalase, GSH and GPx in diabetic heart, garlic administration showed significant (p<0.05) increase in all three antioxidant/enzymes levels. Increased endogenous antioxidant enzymes and gene expression in garlic treated diabetic heart are associated with higher protein expression of Nrf2. Increased myocardial H2S levels, activation of PI3K/Akt pathway and decreased Keap levels in fructose-fed heart after garlic administration might be responsible for higher Nrf2 levels. Conclusion Our study demonstrates that raw garlic homogenate is effective in reducing cardiac hypertrophy and fructose-induced myocardial oxidative stress through PI3K/AKT/Nrf2-Keap1 dependent pathway.


Toxicology and Applied Pharmacology | 2014

Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

Bidya Dhar Sahu; Srujana Tatireddy; Meghana Koneru; Roshan M. Borkar; Jerald Mahesh Kumar; Madhusudana Kuncha; R. Srinivas; R Shyam Sunder; Ramakrishna Sistla

Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney.


Biomedical Chromatography | 2012

Identification and characterization of stressed degradation products of metoprolol using LC/Q‐TOF‐ESI‐MS/MS and MSn experiments

Roshan M. Borkar; B. Raju; R. Srinivas; Prashant Patel; Satheesh Kumar Shetty

A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 µm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision.


Life Sciences | 2016

Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice.

Bidya Dhar Sahu; Jerald Mahesh Kumar; Madhusudana Kuncha; Roshan M. Borkar; R. Srinivas; Ramakrishna Sistla

AIMS Doxorubicin is a widely used anthracycline derivative anticancer drug. Unfortunately, the clinical use of doxorubicin has the serious drawback of cardiotoxicity. In this study, we investigated whether baicalein, a bioflavonoid, can prevent doxorubicin-induced cardiotoxicity in vivo and we delineated the possible underlying mechanisms. MAIN METHODS Male BALB/c mice were treated with either intraperitoneal doxorubicin (15 mg/kg divided into three equal doses for 15 days) and/or oral baicalein (25 and 50 mg/kg for 15 days). Serum markers of cardiac injury, histology of heart, parameters related to myocardial oxidative stress, apoptosis and inflammation were investigated. KEY FINDINGS Treatment with baicalein reduced doxorubicin-induced elevation of serum creatine kinase-MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and ameliorated the histopathological damage. Baicalein restored the doxorubicin-induced decrease in both enzymatic and non-enzymatic myocardial antioxidants and increased the myocardial expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Further studies showed that baicalein could inverse the Bax/Bcl-2 ratio, suppress doxorubicin-induced p53, cleaved caspase-3 and PARP expression and prevented doxorubicin-induced DNA damage. Baicalein treatment also interferes with doxorubicin-induced myocardial NF-κB signaling through inhibition of IκBα phosphorylation and nuclear translocation of p65 subunit. Doxorubicin elevated iNOS and nitrites levels were also significantly decreased in baicalein treated mice. However, we did not find any significant change (p>0.05) in the myocardial TNF-α and IL-6 levels in control and treated animals. SIGNIFICANCE Our finding suggests that baicalein might be a promising molecule for the prevention of doxorubicin-induced cardiotoxicity.


Rapid Communications in Mass Spectrometry | 2012

In vivo metabolic investigation of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry in combination with online hydrogen/deuterium exchange experiments.

B. Raju; M. Ramesh; Roshan M. Borkar; R. Srinivas; Raju Padiya; Sanjay K. Banerjee

RATIONALE Tuberculosis is a leading cause of death from an infectious disease and moxifloxacin is an effective drug as compared to other fluoroquinolones. To date only two metabolites of the drug are known. Therefore, the present study on characterization of hitherto unknown in vivo metabolites of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is undertaken. METHODS In vivo metabolites of moxifloxacin have been identified and characterized by using LC/ESI-MS/MS in combination with an online hydrogen/deuterium (H/D) exchange technique. To identify in vivo metabolites, blood, urine and faeces samples were collected after oral administration of moxifloxacin to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation, liquid-liquid extraction followed by solid-phase extraction and LC/MS/MS analysis. RESULTS A total of nine phase I and ten phase II metabolites of moxifloxacin have been identified in urine samples including N-sulphated, glucuronide and hydroxylated metabolites which are also observed in plasma samples. In faeces samples, only the N-sulphated metabolite is observed. The structures of metabolites have been elucidated based on fragmentation patterns, accurate mass measurements and online H/D exchange LC/MS/MS experiments. Online H/D exchange experiments are used to support the identification and structural characterization of drug metabolites. CONCLUSIONS A total of 19 in vivo metabolites of moxifloxacin have been characterized using LC/ESI-MS/MS in combination with accurate mass measurements and online H/D exchange experiments. The main phase I metabolites of moxifloxacin are hydroxylated, decarbonylated, desmethylated and desmethylhydroxylated metabolites which undergo subsequent phase II glucuronidation pathways.


Biomedical Chromatography | 2012

Development and validation of liquid chromatography–mass spectrometric method for simultaneous determination of moxifloxacin and ketorolac in rat plasma: application to pharmacokinetic study

B. Raju; M. Ramesh; Roshan M. Borkar; Raju Padiya; Sanjay K. Banerjee; R. Srinivas

A highly sensitive, selective and rapid liquid chromatography-electrospray ionization mass spectrometry (LC-MS) method has been developed and validated for simultaneous determination of moxifloxacin (MFX) and ketorolac (KTC) in rat plasma. Gemifloxacin (GFX) was used as an internal standard (IS). A simple protein precipitation method was used for the extraction of analytes from rat plasma. Effective chromatographic separation of MFX, KTC and GFX was achieved on a Kromasil C(18) column (100 × 4.6 mm, 5 µm) using a mobile phase consisting of acetonitrile-10 mm ammonium acetate (pH 2.5)-0.1% formic acid (50:25:25) in an isocratic elution, followed by detection with positive ion electrospray ionization mass spectrometry using target ions of [M + H](+) at m/z 402 for MFX, m/z 256 for KTC and m/z 390 for GFX in selective ion recording mode. The method was validated over the calibration range of 5-100 ng/mL for MFX and 10-6000 ng/mL for KTC. The method demonstrated good performances in terms of intra- and inter-day precision (0.97-5.33%) and accuracy (93.91-101.58%) for both MFX and KTC, including lower and upper limits of quantification. The recoveries from spiked control samples were >75% for MFX and >79% for KTC. The matrix effect was found to be negligible and the stability data were within acceptable limits. Further, the method was also successfully applied to a single-dose pharmacokinetic study in rats. This method can be extended to measure plasma concentrations of both drugs in human to understand drug interaction and adverse effects.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Plasma protein binding, pharmacokinetics, tissue distribution and CYP450 biotransformation studies of fidarestat by ultra high performance liquid chromatography-high resolution mass spectrometry.

Roshan M. Borkar; Murali Mohan Bhandi; Ajay P. Dubey; Prajwal P. Nandekar; Abhay T. Sangamwar; Sanjay K. Banerjee; R. Srinivas

Fidarestat, an aldose reductase inhibitor, has been used for the treatment of the diabetic associated complications such as retinopathy, neuropathy and nephropathy. To better understand the metabolism and pharmacokinetics of fidarestat, we have evaluated plasma protein binding, pharmacokinetics, tissue distribution of the drug and its conjugated metabolites and CYP450 biotransformation by liquid chromatography-high resolution mass spectrometry. Effective chromatographic separation of fidarestat and hydrochlorothiazide (IS) in rat plasma and tissues was achieved on Hypersil gold C-18 column in an isocratic elution mode. For detection, a high-resolution Orbitrap mass spectrometer with heated electrospray ionization inlet in the negative ion mode was used. High-resolution extracted ion chromatograms for each analyte were obtained by processing the full-scan MS mode with 5 ppm mass tolerance. The impact of plasma protein binding with the drug and conjugated metabolites of the drug on pharmacokinetics has been determined. The study indicated that 9.5% of free form of fidarestat may be pharmacologically active and the Cmax for free fidarestat was found to be 80.30 ± 6.78 ng/mL. The AUC0-t and AUC0-∞ were found to be 185.46 ± 32 and 195.92 ± 15.06 ng h/mL, respectively. Among tissues, the maximum observed distribution was found to be in kidney followed by liver and heart. Docking experiments and in vitro CYP450 reaction phenotyping revealed that two CYP1A2 and CYP2D6 are involved in the phase I metabolism of fidarestat. Oxidative deamination and N/O glucuronidation are the major phase I and phase II metabolites, respectively. In vitro CYP450 inhibition assay of fidarestat for drug-drug interaction showed weak inhibition and may not alter pharmacokinetics, distribution or clearance of other co-administered drug.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Identification of forced degradation products of tamsulosin using liquid chromatography/electrospray ionization tandem mass spectrometry.

Deepak Namdev; Roshan M. Borkar; B. Raju; Pradipbhai D. Kalariya; Vinodkumar T. Rahangdale; S. Gananadhamu; R. Srinivas

A rapid and gradient high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of tamsulosin. Tamsulosin, a selective α1-adrenoceptor antagonist, was subjected to forced degradation studies under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions as per ICH guidelines Q1A (R2). The drug degraded significantly under hydrolytic (base and neutral), thermal, oxidative and photolytic conditions, while it was stable to acid hydrolytic stress conditions. A total of twelve degradation products were formed and the chromatographic separation of the drug and its degradation products were achieved on a GRACE C-18 column (250mm×4.6mm, 5μm). All the degradants have been identified and characterized by LC/ESI-MS/MS and accurate mass measurements. To elucidate the structures of degradation products, fragmentation of the [M+H](+) ions of tamsulosin and its degradation products was studied by using LC-MS/MS experiments combined with accurate mass measurements. The product ions of all the protonated degradation products were compared with the product ions of protonated tamsulosin to assign most probable structures for the observed degradation products.


Journal of Mass Spectrometry | 2012

Identification and structural characterization of in vivo metabolites of ketorolac using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS)

B. Raju; M. Ramesh; Roshan M. Borkar; Raju Padiya; Sanjay K. Banerjee; R. Srinivas

In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI-HR-MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid-phase extraction and then subjected to LC/HR-MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O-sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC-MS/MS and MS(n) experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways.


Drug Delivery | 2017

Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles

Amrita Kadari; Sagarika Gudem; Hitesh Kulhari; Murali Mohan Bhandi; Roshan M. Borkar; Venkata Ramana Murthy Kolapalli; Ramakrishna Sistla

Abstract Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

Collaboration


Dive into the Roshan M. Borkar's collaboration.

Top Co-Authors

Avatar

R. Srinivas

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

B. Raju

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Murali Mohan Bhandi

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Raju Padiya

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Ramakrishna Sistla

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Srinivas Ragampeta

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

G. Shankar

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Ramesh

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Bidya Dhar Sahu

Indian Institute of Chemical Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge