Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raluca G. Mateescu is active.

Publication


Featured researches published by Raluca G. Mateescu.


Journal of Animal Science | 2015

Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle

Raluca G. Mateescu; Dorian J. Garrick; A. J. Garmyn; D. L. VanOverbeke; G. G. Mafi; James M. Reecy

The objective of this study was to estimate heritabilities for sensory traits and genetic correlations among sensory traits and with marbling score (MS), Warner-Bratzler shear force (WBSF), and intramuscular fat content (IMFC). Samples of LM from 2,285 Angus cattle were obtained and fabricated into steaks for laboratory analysis and 1,720 steaks were analyzed by a trained sensory panel. Restricted maximum likelihood procedures were used to obtain estimates of variance and covariance components under a multitrait animal model. Estimates of heritability for MS, IMFC, WBSF, tenderness, juiciness, and connective tissue traits were 0.67, 0.38, 0.19, 0.18, 0.06, and 0.25, respectively. The genetic correlations of MS with tenderness, juiciness, and connective tissue were estimated to be 0.57 ± 0.14, 1.00 ± 0.17, and 0.49 ± 0.13, all positive and strong. Estimated genetic correlations of IMFC with tenderness, juiciness, and connective tissue were 0.56 ± 0.16, 1.00 ± 0.21, and 0.50 ± 0.15, respectively. The genetic correlations of WBSF with tenderness, juiciness, and connective tissue were all favorable and estimated to be -0.99 ± 0.08, -0.33 ± 0.30 and -0.99 ± 0.07, respectively. Strong and positive genetic correlations were estimated between tenderness and juiciness (0.54 ± 0.28) and between connective tissue and juiciness (0.58 ± 0.26). In general, genetic correlations were large and favorable, which indicated that strong relationships exist and similar gene and gene networks may control MS, IMFC, and juiciness or WBSF, panel tenderness, and connective tissue. The results from this study confirm that MS currently used in selection breeding programs has positive genetic correlations with tenderness and juiciness and, therefore, is an effective indicator trait for the improvement of tenderness and juiciness in beef. This study also indicated that a more objective measure, particularly WBSF, a trait not easy to improve through phenotypic selection, is an excellent candidate trait for genomic selection aimed at improving eating satisfaction.


Journal of Animal Science | 2015

Genetic parameters and genetic correlations among triacylglycerol and phospholipid fractions in Angus cattle

J. W. Buchanan; James M. Reecy; Dorian J. Garrick; Qing Duan; D.C. Beitz; Raluca G. Mateescu

The objective of this study was to estimate genetic parameters for intramuscular fatty acids from triacylglycerol (TAG) and phospholipid (PL) fractions in beef LM tissue. Longissimus muscle samples were obtained from 1,833 Angus cattle to determine the intramuscular fatty acid composition for 31 lipids and lipid classes from TAG and PL fractions and were classified by structure into saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), omega-3 (n-3), and omega-6 (n-6) fatty acids. An atherogenic index (AI) was also determined as a measure of the unsaturated fatty acid to SFA ratio. Restricted maximum likelihood methods combined with pedigree data were used to estimate variance components with the WOMBAT software package. Heritability estimates ranged from 0.00 to 0.63 for the major classes of fatty acids. Heritability estimates differed between the TAG and PL fractions, with higher estimates for TAG up to 0.64 and lower estimates for PL that ranged from 0.00 to 0.14. Phenotypic and genetic correlations among individual fatty acids were determined for the TAG fraction as well as among carcass traits, including rib eye area, numerical marbling score, yield grade, ether fat, and Warner-Bratzler shear force value. Strong negative or positive genetic correlations were observed among individual fatty acids in the TAG fraction, which ranged from -0.99 to 0.97 ( < 0.05). Moderate correlations between carcass traits and fatty acids from the TAG fraction ranged from -0.43 to 0.32 ( < 0.05). These results indicate that fatty acids prominent in beef tissues show significant genetic variation as well as genetic relationships with carcass traits.


Meat Science | 2018

Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multibreed herd

Shelby A. Wright; Patricia Ramos; D.D. Johnson; J. M. Scheffler; Mauricio A. Elzo; Raluca G. Mateescu; Amy L. Bass; C. Carr; Tracy L. Scheffler

The objective of this study was to determine the influence of Brahman genetics on muscle contractile and metabolic phenotype and postmortem proteolysis. Cattle used in this study represent a continuous spectrum of Angus-Brahman genetic variation. Steers were harvested and Longissimus samples were collected at 1.5h, 24h, and 14d postmortem. Proteolysis during the 14d aging period was evaluated, along with Warner-Bratzler shear force (WBSF) and trained sensory panel tenderness. Myosin heavy chain composition and enzymatic activity were used to evaluate fiber type characteristics. As Brahman influence increased, WBSF increased and sensory tenderness decreased. Calpain-1 autolysis decreased as Brahman percentage increased, and corresponded with reduced degradation of troponin-T, desmin, and titin. Increasing Brahman percentage was associated with greater citrate synthase activity and greater cross-sectional area of type IIx fibers. Brahman-influenced cattle produced tougher steaks and exhibited decreased protein degradation. Thus, Brahman genetics impacted not only the calpain-calpastatin system, but also muscle fiber size and metabolic properties.


Frontiers in Genetics | 2016

Deriving Gene Networks from SNP Associated with Triacylglycerol and Phospholipid Fatty Acid Fractions from Ribeyes of Angus Cattle

J. W. Buchanan; James M. Reecy; Dorian J. Garrick; Qing Duan; D.C. Beitz; James E. Koltes; Mahdi Saatchi; Lars Koesterke; Raluca G. Mateescu

The fatty acid profile of beef is a complex trait that can benefit from gene-interaction network analysis to understand relationships among loci that contribute to phenotypic variation. Phenotypic measures of fatty acid profile from triacylglycerol and phospholipid fractions of longissimus muscle, pedigree information, and Illumina 54 k bovine SNP genotypes were utilized to derive an annotated gene network associated with fatty acid composition in 1,833 Angus beef cattle. The Bayes-B statistical model was utilized to perform a genome wide association study to estimate associations between 54 k SNP genotypes and 39 individual fatty acid phenotypes within each fraction. Posterior means of the effects were estimated for each of the 54 k SNP and for the collective effects of all the SNP in every 1-Mb genomic window in terms of the proportion of genetic variance explained by the window. Windows that explained the largest proportions of genetic variance for individual lipids were found in the triacylglycerol fraction. There was almost no overlap in the genomic regions explaining variance between the triacylglycerol and phospholipid fractions. Partial correlations were used to identify correlated regions of the genome for the set of largest 1 Mb windows that explained up to 35% genetic variation in either fatty acid fraction. SNP were allocated to windows based on the bovine UMD3.1 assembly. Gene network clusters were generated utilizing a partial correlation and information theory algorithm. Results were used in conjunction with network scoring and visualization software to analyze correlated SNP across 39 fatty acid phenotypes to identify SNP of significance. Significant pathways implicated in fatty acid metabolism through GO term enrichment analysis included homeostasis of number of cells, homeostatic process, coenzyme/cofactor activity, and immunoglobulin. These results suggest different metabolic pathways regulate the development of different types of lipids found in bovine muscle tissues. Network analysis using partial correlations and annotation of significant SNPs can yield information about the genetic architecture of complex traits.


Frontiers in Genetics | 2017

Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle

Raluca G. Mateescu; Dorian J. Garrick; James M. Reecy

Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.


Parasite Immunology | 2018

Effect of Ovar-DRA and Ovar-DRB1 genotype in small ruminants with haemonchosis

Z. M. Estrada-Reyes; Y. Tsukahara; A.L. Goetsch; T.A. Gipson; T. Sahlu; R. Puchala; Z. Wang; S. P. Hart; Raluca G. Mateescu

The effect of Ovar‐DRA and Ovar‐DRB1 genotypes on faecal egg count (FEC) was determined in sheep and goats infected with Haemonchus contortus. One hundred and forty‐three sheep from 3 different breeds (St. Croix, Katahdin and Dorper) and 150 goats from three different breeds (Spanish, Boer and Kiko) were used. Parasitological (FEC), haematological (packed cell volume) and immunological (IgA, IgG and IgM) parameters were measured. Sheep populations showed a higher FEC and humoural response than goat breeds. Genotypes were determined by high‐resolution melting assays and by conventional PCR. For Ovar‐DRA, sheep and goats carrying the AA genotype showed significant lower FEC than AG and GG genotypes. The additive effect was found to be 115.35 less eggs per gram of faeces for the A allele for goats. For Ovar‐DRB1, only in sheep, the GC genotype was associated with low FEC. The additive effect was 316.48 less eggs per gram of faeces for the G allele, and the dominance effect was 538.70 less eggs per gram of faeces. The results indicate that single nucleotide polymorphisms within Ovar‐DRA and Ovar‐DRB1 could be potential markers to be used in selection programmes for improving resistance to Haemonchus contortus infection.


Journal of Animal Science | 2018

Environmental effects on water intake and water intake prediction in growing beef cattle1,2

Cashley M Ahlberg; Kristi Allwardt; Ashley Broocks; Kelsey Bruno; Levi McPhillips; Alexandra Taylor; C R Krehbiel; M. S. Calvo-Lorenzo; C. J. Richards; S. E. Place; Udaya DeSilva; D. L. VanOverbeke; Raluca G. Mateescu; L. A. Kuehn; Robert L. Weaber; Jennifer M. Bormann; Megan M Rolf

Water is an essential nutrient, but there are few recent studies that evaluate how much water individual beef cattle consume and how environmental factors affect an individuals water intake (WI). Most studies have focused on WI of whole pens rather than WI of individual animals. Thus, the objective of this study was to evaluate the impact of environmental parameters on individual-animal WI across different seasons and develop prediction equations to estimate WI, including within different environments and management protocols. Individual daily feed intake and WI records were collected on 579 crossbred steers for a 70-d period following a 21-d acclimation period for feed and water bunk training. Steers were fed in 5 separate groups over a 3-yr period from May 2014 to March 2017. Individual weights were collected every 14 d and weather data were retrieved from the Oklahoma Mesonets Stillwater station. Differences in WI as a percent of body weight (WI%) were analyzed accounting for average temperature (TAVG), relative humidity (HAVG), solar radiation (SRAD), and wind speed (WSPD). Seasonal (summer vs. winter) and management differences (ad libitum vs. slick bunk) were examined. Regression analysis was utilized to generate 5 WI prediction equations (overall, summer, winter, slick, and ad libitum). There were significant (P < 0.05) differences in WI between all groups when no environmental parameters were included in the model. Although performance was more similar after accounting for all differences in weather variables, significant (P < 0.05) seasonal and feed management differences were still observed for WI%, but were less than 0.75% of steer body weight. The best linear predictors of daily WI (DWI) were dry mater intake (DMI), metabolic body weights (MWTS), TAVG, SRAD, HAVG, and WSPD. Slight differences in the coefficient of determinations for the various models were observed for the summer (0.34), winter (0.39), ad libitum (0.385), slick bunk (0.41), and overall models (0.40). Based on the moderate R2 values for the WI prediction equations, individual DWI can be predicted with reasonable accuracy based on the environmental conditions that are present, MWTS, and DMI consumed, but substantial variation exists in individual animal WI that is not accounted for by these models.


Journal of Animal Science | 2018

Test duration for water intake, ADG, and DMI in beef cattle1

Cashley M Ahlberg; Kristi Allwardt; Ashley Broocks; Kelsey Bruno; Levi McPhillips; Alexandra Taylor; C R Krehbiel; M. S. Calvo-Lorenzo; C. J. Richards; S. E. Place; Udaya DeSilva; D. L. VanOverbeke; Raluca G. Mateescu; L. A. Kuehn; Robert L. Weaber; Jennifer M. Bormann; Megan M Rolf

Water is an essential nutrient, but the effect it has on performance generally receives little attention. There are few systems and guidelines for collection of water intake (WI) phenotypes in beef cattle, which makes large-scale research on WI a challenge. The Beef Improvement Federation has established guidelines for feed intake (FI) and ADG tests, but no guidelines exist for WI. The goal of this study was to determine the test duration necessary for collection of accurate WI phenotypes. To facilitate this goal, individual daily WI and FI records were collected on 578 crossbred steers for a total of 70 d using an Insentec system at the Oklahoma State University Willard Sparks Beef Research Unit. Steers were fed in five groups and were individually weighed every 14 d. Within each group, steers were blocked by BW (low and high) and randomly assigned to one of four pens containing approximately 30 steers per pen. Each pen provided 103.0 m2 of shade and included an Insentec system containing six feed bunks and one water bunk. Steers were fed a constant diet across groups and DMI was calculated using the average of weekly percent DM within group. Average FI and WI for each animal were computed for increasingly large test durations (7, 14, 21, 28, 35, 42, 49, 56, 63, and 70 d), and ADG was calculated using a regression formed from BW taken every 14 d (0, 14, 28, 42, 56, and 70 d). Intervals for all traits were computed starting from both the beginning (day 0) and the end of the testing period (day 70). Pearson and Spearman correlations were computed for phenotypes from each shortened test period and for the full 70-d test. Minimum test duration was determined when the Pearson correlations were greater than 0.95 for each trait. Our results indicated that minimum test duration for WI, DMI, and ADG were 35, 42, and 70 d, respectively. No comparable studies exist for WI; however, our results for FI and ADG are consistent with those in the literature. Although further testing in other populations of cattle and areas of the country should take place, our results suggest that WI phenotypes can be collected concurrently with DMI, without extending test duration, even if following procedures for decoupled intake and gain tests.


Journal of Animal Science | 2018

Determination of the optimum contribution of Brahman genetics in an Angus-Brahman multibreed herd for regulation of body temperature during hot weather

Serdal Dikmen; Raluca G. Mateescu; Mauricio A. Elzo; P. J. Hansen

The objective was to evaluate the influence of varying amounts of Brahman genetics on body temperature under pasture conditions during hot weather. Vaginal temperatures were measured at 5-min intervals for 3 to 5 d on four occasions during August and September from a total of 190 pregnant cows that were either Angus, 2/8 Brahman (remainder Angus), Brangus (3/8 Brahman), 4/8 Brahman, 6/8 Brahman or Brahman. Vaginal temperature was higher for the first two replicates than for the second two replicates. In the first two replicates, average vaginal temperature did not differ between genetic groups, but average vaginal temperature from 1500 to 1900 h was lower for Brahman than other groups. In the second two replicates, average vaginal temperature was lower for cows that were 4/8 or higher Brahman than for cows that were 2/8 Brahman or Angus. Average vaginal temperature from 1500 to 1900 h was lower for cows that were 4/8 or higher Brahman than for cows that were 2/8 Brahman or Angus. In addition, Brahman cows had lower vaginal temperatures than cows that were 4/8 Brahman or 3/8 Brahman (i.e., Brangus). In one replicate, a tracking device was used to map cow location. At 1200 to 1300 h, cows that were 6/8 Brahman or Brahman had fewer observations near the tree line (i.e., in shade) than cows that were 4/8 Brahman or less. At 1500 to 1600 h, cows that were 4/8 or higher Brahman experienced fewer observations near the tree line than cows that contained a lower fraction of Brahman genetics. In summary, a minimum of 4/8 Brahman genetics was required to increase the ability to regulate body temperature and at least 6/8 Brahman when heat stress was severe. It is likely, therefore, that using Brahman genetics to optimize adaptation to thermal stress under conditions of severe heat stress requires a preponderance of Brahman genes.


Journal of Animal Science | 2018

Thermoregulatory response of Brangus heifers to naturally occurring heat exposure on pasture

Heather Hamblen; P. J. Hansen; Adriana M Zolini; Pascal A Oltenacu; Raluca G. Mateescu

Heat stress is a cause of major economic losses to cattle producers, especially in tropical and subtropical environments. The objectives of this study were to assess the phenotypic variability in core body temperature and sweating rate and to evaluate the effect of coat type, temperament, and BW on core body temperature and sweating rate in Brangus heifers. During August and September of 2016, 725 Brangus heifers were evaluated on pasture in four separate groups (n = 200, 189, 197, and 139). Environmental measurements of dry bulb temperature (Tdb) and relative humidity (RH) were measured every 15 min during the entire time of data collection and the temperature-humidity index (THI) was used to quantify heat-stress potential. Coat score, sweating rate, chute score, exit score, and live weight were recorded as the animals passed through the chute. Vaginal temperature was recorded every 5 min for five consecutive days. There was significant variation in vaginal temperature between heifers in the same environmental conditions (σ2u = 0.049), suggesting opportunities for selective improvements. A repeatability of 0.47 and 0.44 was estimated for sweating rate and vaginal temperature, respectively, suggesting that one measurement would be able to adequately describe the sweating capacity or ability to control the body temperature of an individual. Vaginal temperature increased as THI increased, with approximately 1 h lag time in the animals response. Vaginal temperature (-0.047 °C, P = 0.015) and sweating rate were lower (-5.49 ± 2.12 g/(m2·h), P < 0.01) for heifers that demonstrated a calmer behavior in the chute. Animals with shorter, smoother hair coats had significantly lower vaginal temperatures when compared to animals with longer hair coats (P < 0.01). Also, heavier heifers in this study maintained lower (P < 0.0001) vaginal temperature than the lighter heifers. Our results showed that hair coat, temperament, and weight influenced vaginal temperature regulation.

Collaboration


Dive into the Raluca G. Mateescu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Carr

University of Florida

View shared research outputs
Top Co-Authors

Avatar

D. O. Rae

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge