Tracy L. Scheffler
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracy L. Scheffler.
American Journal of Physiology-cell Physiology | 2009
Sungkwon Park; Tracy L. Scheffler; A. M. Gunawan; Hao Shi; Caiyun Zeng; Kevin Hannon; A.L. Grant; D. E. Gerrard
Muscle contraction stimulates glucose transport independent of insulin. Glucose uptake into muscle cells is positively related to skeletal muscle-specific glucose transporter (GLUT-4) expression. Therefore, our objective was to determine the effects of the contraction-mediated signals, calcium and AMP-activated protein kinase (AMPK), on glucose uptake and GLUT-4 expression under acute and chronic conditions. To accomplish this, we used pharmacological agents, cell culture, and pigs possessing genetic mutations for increased cytosolic calcium and constitutively active AMPK. In C2C12 myotubes, caffeine, a sarcoplasmic reticulum calcium-releasing agent, had a biphasic effect on GLUT-4 expression and glucose uptake. Low-concentration (1.25 to 2 mM) or short-term (4 h) caffeine treatment together with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), had an additive effect on GLUT-4 expression. However, high-concentration (2.5 to 5 mM) or long-term (4 to 30 h) caffeine treatment decreased AMPK-induced GLUT-4 expression without affecting cell viability. The negative effect of caffeine on AICAR-induced GLUT-4 expression was reduced by dantrolene, which desensitizes the ryanodine receptor. Consistent with cell culture data, increases in GLUT-4 mRNA and protein expression induced by AMPK were blunted in pigs possessing genetic mutations for both increased cytosolic calcium and constitutively active AMPK. Altogether, these data suggest that chronic exposure to elevated cytosolic calcium concentration blocks AMPK-induced GLUT-4 expression in skeletal muscle.
Cell Calcium | 2013
Sungkwon Park; Tracy L. Scheffler; Sandra Rossie; D. E. Gerrard
AMP-activated protein kinase (AMPK) is activated by upstream kinases and negatively regulated by protein phosphatases. Intracellular calcium mediates protein phosphatase 2A (PP2A), which is in a heterotrimeric complex with the PR72 subunit. The PR72 subunit contains two calcium-binding sites formed by EF hands. Our previous study has shown that chronic calcium exposure decreases AMPK activity. To define the specific molecular mechanism whereby calcium can deactivate AMPK, activities of AMPK and PP2A were analyzed in C2C12 muscle cell cultures and skeletal muscle tissues from mutant pigs possessing the AMPKγ3-mutation or the ryanodine receptor (RyR1) calcium gating mutation, or both. C2C12 myotubes treated with calcium releasing agent (caffeine) for 10h decreased (P<0.05) AICAR-induced AMPK activity to control levels and this negative effect was eliminated by ryanodine receptor stabilizer, dantrolene. Interestingly, muscle from pigs with the RyR1 mutation and C2C12 cells administered with 10h caffeine showed higher (P<0.05) PP2A activity compared to controls. More importantly, the inhibitory effect of caffeine on AMPK activity was attenuated by the PP2A inhibitor, calyculin A or siRNA induced knockdown of PP2A. These data show the inhibitory effect of chronic calcium on AMPK activity is exerted through the activation of PP2A.
Meat Science | 2014
Eric M. England; Sulaiman K. Matarneh; Tracy L. Scheffler; Céline Wachet; D. E. Gerrard
Fresh meat quality development is influenced by pH decline that results from muscle glycolyzing energy substrates postmortem. The exact reason why glycolysis stops in the presence of residual glycogen remains unclear. We hypothesized that a critical glycolytic enzyme loses activity near the ultimate pH of meat. Porcine longissimus muscle samples were subjected to an in vitro system that mimics postmortem anaerobic metabolism at buffered pH values (7.0, 6.5, 6.0, 5.5 or 5.0). At pH7.0, 6.5, and 6.0, glycogenolysis and glycolysis proceeded normally while pH5.5 stopped lactate formation. Additional experimentation indicated that phosphofructokinase lost activity at pH5.5 while all other glycolytic enzymes remained active. A similar inactivation of phosphofructokinase was observed when using chicken and beef muscle. Elevated temperature hastened pH decline and phosphofructokinase activity loss. Thus, pH inactivates phosphofructokinase and arrests postmortem glycolysis, which may explain the similar ultimate pH across meat of different species.
Meat Science | 2013
Eric M. England; Tracy L. Scheffler; S.C. Kasten; Sulaiman K. Matarneh; D. E. Gerrard
Meat quality development, or the transformation of muscle to meat, involves a myriad of biochemical pathways that are largely well-studied in living muscle tissue. However, these pathways are less predictable when homeostatic ranges are violated. In addition, there is far less known about how various management or environmental stimuli impact these pathways, either by substrate load or altered cellular environment. Likewise, it is largely accepted that oxygen plays little to no role in the conversion of muscle to meat, as anaerobic metabolism predominates in the muscle tissue. Even so, the oxygen tension within the tissues does not fall precipitously at exsanguination. Therefore, transition to an anaerobic environment may impact energy metabolism postmortem. Antemortem handling, on the other hand, clearly impacts meat quality development, yet the exact mechanisms remain a mystery. In this paper, we will attempt to review those factors known to affect postmortem energy metabolism in muscle and explore those areas where additional work may be fruitful.
Meat Science | 2013
Tracy L. Scheffler; J. M. Scheffler; S.C. Kasten; A.A. Sosnicki; D. E. Gerrard
Extent of postmortem pH decline influences meat quality development. To better understand physiological determination of ultimate pH (pHu), we utilized female and castrated male pigs from a line whose selection index includes differentiated pHu. All genotypes of AMP-activated protein kinase γ3 subunit (AMPKγ3) V199I site were present. The mutant 199II genotype increased pHu, but only in castrated males. Genotype affected glycolytic potential (GP), but GP was weakly associated with pHu. A subset of animals was selected based on low (-Gly) and high (+Gly) residual glycogen content, and compared with AMPKγ3 200Q, which is associated with low pHu. Both +Gly and 200Q muscle contained glycolytic substrate at 24h; however, 200Q muscle generated low pHu and greater lactate compared to +Gly. Additionally,-Gly and +Gly groups exhibited similar pHu despite a large difference in GP. In conclusion, high GP does not appear to directly impact the extent of postmortem pH decline.
Meat Science | 2016
Eric M. England; Sulaiman K. Matarneh; Emily M. Oliver; Ariel Apaoblaza; Tracy L. Scheffler; Hao Shi; D. E. Gerrard
Skeletal muscle glycogen content can impact the extent of postmortem pH decline. Compared to glycolytic muscles, oxidative muscles contain lower glycogen levels antemortem which may contribute to the higher ultimate pH. In an effort to explore further the participation of glycogen in postmortem metabolism, we postulated that increasing the availability of glycogen would drive additional pH decline in oxidative muscles to equivalent pH values similar to the ultimate pH of glycolytic muscles. Glycolysis and pH declines were compared in porcine longissimus lumborum (glycolytic) and masseter (oxidative) muscles using an in vitro system in the presence of excess glycogen. The ultimate pH of the system containing longissimus lumborum reached a value similar to that observed in intact muscle. The pH decline of the system containing masseter samples stopped prematurely resulting in a higher ultimate pH which was similar to that of intact masseter muscle. To investigate further, we titrated powdered longissimus lumborum and masseter samples in the reaction buffer. As the percentage of glycolytic sample increased, the ultimate pH decreased. These data show that oxidative muscle produces meat with a high ultimate pH regardless of glycogen content and suggest that inherent muscle factors associated with glycolytic muscle control the extent of pH decline in pig muscles.
Meat Science | 2015
Sulaiman K. Matarneh; Eric M. England; Tracy L. Scheffler; Emily M. Oliver; D. E. Gerrard
Postmortem lactate accumulation in skeletal muscle is linearly associated with the extent of pH decline. Yet, pigs harboring the AMPKγ3(R200Q) mutation produce meat with similar lactate levels to that of wild-type pigs but have a lower ultimate pH. We hypothesized that lower initial lactate levels and (or) lower buffering capacity in muscle of these pigs may help explain this discrepancy. Longissimus lumborum muscle samples were harvested at 0 and 1440 min postmortem from AMPKγ3(R200Q) and wild-type pigs. As expected, AMPKγ3(R200Q) muscle exhibited a lower ultimate pH but similar lactate levels to that of wild-type pigs at 1440 min postmortem. However, the total net lactate produced postmortem was greater in the AMPKγ3(R200Q) muscle due to lower initial lactate levels at 0 min postmortem. Buffering capacity measured over the pH range of 5.5-7.0 was also lower in AMPKγ3(R200Q) muscle. Greater net lactate accumulation postmortem (i.e., glycolytic flux) coupled with a lower buffering capacity explains the lower ultimate pH of meat from AMPKγ3(R200Q) pigs.
Meat Science | 2015
Tracy L. Scheffler; Sulaiman K. Matarneh; Eric M. England; D. E. Gerrard
Our objective was to determine the influence of mitochondria on metabolites and pH decline using an in vitro model of postmortem muscle metabolism. Mitochondria were isolated from porcine longissimus lumborum and added (0, 0.5, or 2.0mg) to powdered muscle in reaction media containing either a combination of inhibitors for mitochondria complexes (I, IV, and V) or diluent (without inhibitors). In the absence of inhibitors, adding mitochondria (0.5 and 2.0mg) reduced ATP loss from 30 to 120 min, but did not alter glycogen or lactate during this time. In reactions with mitochondria, inhibitors decreased ATP levels by 30 min and increased glycogen degradation by 60 min. Regardless of mitochondria content, inhibitors enhanced lactate accumulation from 15 to 240 min, and decreased pH from 15 min to 1440 min. In the in vitro model, mitochondria influence the maintenance of ATP, and inhibition of mitochondria enzyme activity contributes to accelerated metabolism and pH decline.
Meat Science | 2015
Eric M. England; Sulaiman K. Matarneh; Tracy L. Scheffler; C. Wachet; D. E. Gerrard
Postmortem energy metabolism drives hydrogen accumulation in muscle and results in a fairly constant ultimate pH. Extended glycolysis results in adverse pork quality and may be possible with greater adenonucleotide availability postmortem. We hypothesized that slowing adenonucleotide removal by reducing AMP deaminase activity would extend glycolysis and lower the ultimate pH of muscle. Longissimus muscle samples were incorporated into an in vitro system that mimics postmortem glycolysis with or without pentostatin, an AMP deaminase inhibitor. Pentostatin lowered ultimate pH and increased lactate and glucose 6-phosphate with time. Based on these results and that AMPK γ3(R200Q) mutated pigs (RN⁻) produce low ultimate pH pork, we hypothesized AMP deaminase abundance and activity would be lower in RN⁻ muscle than wild-type. RN⁻ muscle contained lower AMP deaminase abundance and activity. These data show that altering adenonucleotide availability postmortem can extend postmortem pH decline and suggest that AMP deaminase activity may, in part, contribute to the low ultimate pH observed in RN⁻ pork.
Cell Calcium | 2011
Sungkwon Park; Tracy L. Scheffler; D. E. Gerrard
Calcium is important for muscle contraction and controls many cellular processes. Although there is evidence that calcium-mediated signals regulate AMP-activated protein kinase (AMPK) activity, the molecular mechanisms by which calcium regulates AMPK are poorly understood. To compare the function of sustained vs. intermittent calcium oscillations on AMPK activity and define specific signals in this pathway, we administered mice with aminoimidazole-carboxamide-ribonucleotide (AICAR) and caffeine with or without dantrolene. AMPK activity was increased by 10 d AICAR treatment (P < 0.01). Ten day caffeine treatment decreased AICAR-induced AMPK activity to control level. This repressed AMPK activity was blocked by dantrolene. Different calcium frequencies were simulated in C2C12 myotubes by alternating media containing caffeine and dantrolene. Intermittent calcium oscillation increased AMPK activity compared to control (P < 0.05), whereas sustained calcium oscillation decreases AICAR-induced AMPK activity to control level. This result suggests a biphasic control of AMPK activity by calcium. Knockdown of CaMKII expression by short-hairpin RNA resulted in increased AMPK phosphorylation by AICAR even in the presence of caffeine. These data show different calcium oscillations elicit distinct responses in muscle cells suggesting that the negative effects of chronic calcium treatment on AMPK activity is partly mediated through the CaMKII signals.