Ramya Kollipara
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramya Kollipara.
Cell | 2007
Zuzana Tothova; Ramya Kollipara; Brian J. P. Huntly; Benjamin H. Lee; Diego H. Castrillon; Dana E. Cullen; Elizabeth P. McDowell; Suzan Lazo-Kallanian; Ifor R. Williams; Christopher Sears; Scott A. Armstrong; Emmanuelle Passegué; Ronald A. DePinho; D. Gary Gilliland
To understand the role of FoxO family members in hematopoiesis, we conditionally deleted FoxO1, FoxO3, and FoxO4 in the adult hematopoietic system. FoxO-deficient mice exhibited myeloid lineage expansion, lymphoid developmental abnormalities, and a marked decrease of the lineage-negative Sca-1+, c-Kit+ (LSK) compartment that contains the short- and long-term hematopoietic stem cell (HSC) populations. FoxO-deficient bone marrow had defective long-term repopulating activity that correlated with increased cell cycling and apoptosis of HSC. Notably, there was a marked context-dependent increase in reactive oxygen species (ROS) in FoxO-deficient HSC compared with wild-type HSC that correlated with changes in expression of genes that regulate ROS. Furthermore, in vivo treatment with the antioxidative agent N-acetyl-L-cysteine resulted in reversion of the FoxO-deficient HSC phenotype. Thus, FoxO proteins play essential roles in the response to physiologic oxidative stress and thereby mediate quiescence and enhanced survival in the HSC compartment, a function that is required for its long-term regenerative potential.
Cell | 2007
Ji Hye Paik; Ramya Kollipara; Gerald C. Chu; Hongkai Ji; Yonghong Xiao; Zhihu Ding; Lili Miao; Zuzana Tothova; James W. Horner; Daniel R. Carrasco; Shan Jiang; D. Gary Gilliland; Lynda Chin; Wing Hung Wong; Diego H. Castrillon; Ronald A. DePinho
Activated phosphoinositide 3-kinase (PI3K)-AKT signaling appears to be an obligate event in the development of cancer. The highly related members of the mammalian FoxO transcription factor family, FoxO1, FoxO3, and FoxO4, represent one of several effector arms of PI3K-AKT signaling, prompting genetic analysis of the role of FoxOs in the neoplastic phenotypes linked to PI3K-AKT activation. While germline or somatic deletion of up to five FoxO alleles produced remarkably modest neoplastic phenotypes, broad somatic deletion of all FoxOs engendered a progressive cancer-prone condition characterized by thymic lymphomas and hemangiomas, demonstrating that the mammalian FoxOs are indeed bona fide tumor suppressors. Transcriptome and promoter analyses of differentially affected endothelium identified direct FoxO targets and revealed that FoxO regulation of these targets in vivo is highly context-specific, even in the same cell type. Functional studies validated Sprouty2 and PBX1, among others, as FoxO-regulated mediators of endothelial cell morphogenesis and vascular homeostasis.
Cancer Research | 2006
Birgit Heltweg; Tonibelle Gatbonton; Aaron D. Schuler; Jeff Posakony; Hongzhe Li; Sondra Goehle; Ramya Kollipara; Ronald A. DePinho; Yansong Gu; Julian A. Simon; Antonio Bedalov
SIRT1 and other NAD-dependent deacetylases have been implicated in control of cellular responses to stress and in tumorigenesis through deacetylation of important regulatory proteins, including p53 and the BCL6 oncoprotein. Hereby, we describe the identification of a compound we named cambinol that inhibits NAD-dependent deacetylase activity of human SIRT1 and SIRT2. Consistent with the role of SIRT1 in promoting cell survival during stress, inhibition of SIRT1 activity with cambinol during genotoxic stress leads to hyperacetylation of key stress response proteins and promotes cell cycle arrest. Treatment of BCL6-expressing Burkitt lymphoma cells with cambinol as a single agent induced apoptosis, which was accompanied by hyperacetylation of BCL6 and p53. Because acetylation inactivates BCL6 and has the opposite effect on the function of p53 and other checkpoint pathways, the antitumor activity of cambinol in Burkitt lymphoma cells may be accomplished through a combined effect of BCL6 inactivation and checkpoint activation. Cambinol was well tolerated in mice and inhibited growth of Burkitt lymphoma xenografts. Inhibitors of NAD-dependent deacetylases may constitute novel anticancer agents.
Journal of Clinical Investigation | 2005
Michael Potente; Carmen Urbich; Ken-ichiro Sasaki; Wolf K. Hofmann; Christopher Heeschen; Alexandra Aicher; Ramya Kollipara; Ronald A. DePinho; Andreas M. Zeiher; Stefanie Dimmeler
Forkhead box O (Foxo) transcription factors are emerging as critical transcriptional integrators among pathways regulating differentiation, proliferation, and survival, yet the role of the distinct Foxo family members in angiogenic activity of endothelial cells and postnatal vessel formation has not been studied. Here, we show that Foxo1 and Foxo3a are the most abundant Foxo isoforms in mature endothelial cells and that overexpression of constitutively active Foxo1 or Foxo3a, but not Foxo4, significantly inhibits endothelial cell migration and tube formation in vitro. Silencing of either Foxo1 or Foxo3a gene expression led to a profound increase in the migratory and sprout-forming capacity of endothelial cells. Gene expression profiling showed that Foxo1 and Foxo3a specifically regulate a nonredundant but overlapping set of angiogenesis- and vascular remodeling-related genes. Whereas angiopoietin 2 (Ang2) was exclusively regulated by Foxo1, eNOS, which is essential for postnatal neovascularization, was regulated by Foxo1 and Foxo3a. Consistent with these findings, constitutively active Foxo1 and Foxo3a repressed eNOS protein expression and bound to the eNOS promoter. In vivo, Foxo3a deficiency increased eNOS expression and enhanced postnatal vessel formation and maturation. Thus, our data suggest an important role for Foxo transcription factors in the regulation of vessel formation in the adult.
Cell Metabolism | 2008
Xiaocheng C. Dong; Kyle D. Copps; Shaodong Guo; Yedan Li; Ramya Kollipara; Ronald A. DePinho; Morris F. White
The forkhead transcription factor Foxo1 regulates expression of genes involved in stress resistance and metabolism. To assess the contribution of Foxo1 to metabolic dysregulation during hepatic insulin resistance, we disrupted Foxo1 expression in the liver of mice lacking hepatic Irs1 and Irs2 (DKO mice). DKO mice were small and developed diabetes; analysis of the DKO-liver transcriptome identified perturbed expression of growth and metabolic genes, including increased Ppargc1a and Igfbp1, and decreased glucokinase, Srebp1c, Ghr, and Igf1. Liver-specific deletion of Foxo1 in DKO mice resulted in significant normalization of the DKO-liver transcriptome and partial restoration of the response to fasting and feeding, near normal blood glucose and insulin concentrations, and normalization of body size. These results demonstrate that constitutively active Foxo1 significantly contributes to hyperglycemia during severe hepatic insulin resistance, and that the Irs1/2 --> PI3K --> Akt --> Foxo1 branch of insulin signaling is largely responsible for hepatic insulin-regulated glucose homeostasis and somatic growth.
Journal of Clinical Investigation | 2007
Tadahiro Kitamura; Yukari Ido Kitamura; Yasuhiro Funahashi; Carrie J. Shawber; Diego H. Castrillon; Ramya Kollipara; Ronald A. DePinho; Jan Kitajewski; Domenico Accili
Forkhead box O (Foxo) transcription factors govern metabolism and cellular differentiation. Unlike Foxo-dependent metabolic pathways and target genes, the mechanisms by which these proteins regulate differentiation have not been explored. Activation of Notch signaling mimics the effects of Foxo gain of function on cellular differentiation. Using muscle differentiation as a model system, we show that Foxo physically and functionally interacts with Notch by promoting corepressor clearance from the Notch effector Csl, leading to activation of Notch target genes. Inhibition of myoblast differentiation by constitutively active Foxo1 is partly rescued by inhibition of Notch signaling while Foxo1 loss of function precludes Notch inhibition of myogenesis and increases myogenic determination gene (MyoD) expression. Accordingly, conditional Foxo1 ablation in skeletal muscle results in increased formation of MyoD-containing (fast-twitch) muscle fibers and altered fiber type distribution at the expense of myogenin-containing (slow-twitch) fibers. Notch/Foxo1 cooperation may integrate environmental cues through Notch with metabolic cues through Foxo1 to regulate progenitor cell maintenance and differentiation.
Nature Medicine | 2009
Zhiyong Cheng; Shaodong Guo; Kyle D. Copps; Xiaochen Dong; Ramya Kollipara; Joseph T. Rodgers; Ronald A. DePinho; Pere Puigserver; Morris F. White
Type 2 diabetes is a complex disease that is marked by the dysfunction of glucose and lipid metabolism. Hepatic insulin resistance is especially pathogenic in type 2 diabetes, as it dysregulates fasting and postprandial glucose tolerance and promotes systemic dyslipidemia and nonalcoholic fatty liver disease. Mitochondrial dysfunction is closely associated with insulin resistance and might contribute to the progression of diabetes. Here we used previously generated mice with hepatic insulin resistance owing to the deletion of the genes encoding insulin receptor substrate-1 (Irs-1) and Irs-2 (referred to here as double-knockout (DKO) mice) to establish the molecular link between dysregulated insulin action and mitochondrial function. The expression of several forkhead box O1 (Foxo1) target genes increased in the DKO liver, including heme oxygenase-1 (Hmox1), which disrupts complex III and IV of the respiratory chain and lowers the NAD+/NADH ratio and ATP production. Although peroxisome proliferator–activated receptor-γ coactivator-1α (Ppargc-1α) was also upregulated in DKO liver, it was acetylated and failed to promote compensatory mitochondrial biogenesis or function. Deletion of hepatic Foxo1 in DKO liver normalized the expression of Hmox1 and the NAD+/NADH ratio, reduced Ppargc-1α acetylation and restored mitochondrial oxidative metabolism and biogenesis. Thus, Foxo1 integrates insulin signaling with mitochondrial function, and inhibition of Foxo1 can improve hepatic metabolism during insulin resistance and the metabolic syndrome.
Science | 2003
Diego H. Castrillon; Lili Miao; Ramya Kollipara; James W. Horner; Ronald A. DePinho
Archive | 2018
Ronald A. DePinho; Ji Hye Paik; Ramya Kollipara
Blood | 2006
Zuzana Tothova; Ramya Kollipara; Brian J. P. Huntly; Benjamin H. Lee; Diego H. Castrillon; Emmanuelle Passegué; Dana E. Cullen; Elizabeth P. McDowell; Suzan Lazo-Kallanian; Ifor R. Williams; Ronald A. DePinho; D. Gary Gilliland