Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zuzana Tothova is active.

Publication


Featured researches published by Zuzana Tothova.


Cell | 2007

FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress

Zuzana Tothova; Ramya Kollipara; Brian J. P. Huntly; Benjamin H. Lee; Diego H. Castrillon; Dana E. Cullen; Elizabeth P. McDowell; Suzan Lazo-Kallanian; Ifor R. Williams; Christopher Sears; Scott A. Armstrong; Emmanuelle Passegué; Ronald A. DePinho; D. Gary Gilliland

To understand the role of FoxO family members in hematopoiesis, we conditionally deleted FoxO1, FoxO3, and FoxO4 in the adult hematopoietic system. FoxO-deficient mice exhibited myeloid lineage expansion, lymphoid developmental abnormalities, and a marked decrease of the lineage-negative Sca-1+, c-Kit+ (LSK) compartment that contains the short- and long-term hematopoietic stem cell (HSC) populations. FoxO-deficient bone marrow had defective long-term repopulating activity that correlated with increased cell cycling and apoptosis of HSC. Notably, there was a marked context-dependent increase in reactive oxygen species (ROS) in FoxO-deficient HSC compared with wild-type HSC that correlated with changes in expression of genes that regulate ROS. Furthermore, in vivo treatment with the antioxidative agent N-acetyl-L-cysteine resulted in reversion of the FoxO-deficient HSC phenotype. Thus, FoxO proteins play essential roles in the response to physiologic oxidative stress and thereby mediate quiescence and enhanced survival in the HSC compartment, a function that is required for its long-term regenerative potential.


Cell | 2007

FoxOs Are Lineage-Restricted Redundant Tumor Suppressors and Regulate Endothelial Cell Homeostasis

Ji Hye Paik; Ramya Kollipara; Gerald C. Chu; Hongkai Ji; Yonghong Xiao; Zhihu Ding; Lili Miao; Zuzana Tothova; James W. Horner; Daniel R. Carrasco; Shan Jiang; D. Gary Gilliland; Lynda Chin; Wing Hung Wong; Diego H. Castrillon; Ronald A. DePinho

Activated phosphoinositide 3-kinase (PI3K)-AKT signaling appears to be an obligate event in the development of cancer. The highly related members of the mammalian FoxO transcription factor family, FoxO1, FoxO3, and FoxO4, represent one of several effector arms of PI3K-AKT signaling, prompting genetic analysis of the role of FoxOs in the neoplastic phenotypes linked to PI3K-AKT activation. While germline or somatic deletion of up to five FoxO alleles produced remarkably modest neoplastic phenotypes, broad somatic deletion of all FoxOs engendered a progressive cancer-prone condition characterized by thymic lymphomas and hemangiomas, demonstrating that the mammalian FoxOs are indeed bona fide tumor suppressors. Transcriptome and promoter analyses of differentially affected endothelium identified direct FoxO targets and revealed that FoxO regulation of these targets in vivo is highly context-specific, even in the same cell type. Functional studies validated Sprouty2 and PBX1, among others, as FoxO-regulated mediators of endothelial cell morphogenesis and vascular homeostasis.


Nature Biotechnology | 2014

Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation

John G. Doench; Ella Hartenian; Daniel B. Graham; Zuzana Tothova; Mudra Hegde; Ian Smith; Meagan Sullender; Benjamin L. Ebert; Ramnik J. Xavier; David E. Root

Components of the prokaryotic clustered, regularly interspaced, short palindromic repeats (CRISPR) loci have recently been repurposed for use in mammalian cells. The CRISPR-associated (Cas)9 can be programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there are few known rules governing on-target efficacy of this system. We created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. We discovered sequence features that improved activity, including a further optimization of the protospacer-adjacent motif (PAM) of Streptococcus pyogenes Cas9. The results from 1,841 sgRNAs were used to construct a predictive model of sgRNA activity to improve sgRNA design for gene editing and genetic screens. We provide an online tool for the design of highly active sgRNAs for any gene of interest.


Nature Biotechnology | 2016

Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

John G. Doench; Nicolo Fusi; Meagan Sullender; Mudra Hegde; Emma W Vaimberg; Katherine F Donovan; Ian Smith; Zuzana Tothova; Craig B. Wilen; Robert C. Orchard; Herbert W. Virgin; Jennifer Listgarten; David E. Root

CRISPR-Cas9–based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering.


Cell | 2007

The Retinoblastoma Binding Protein RBP2 Is an H3K4 Demethylase

Robert J. Klose; Qin Yan; Zuzana Tothova; Kenichi Yamane; Hediye Erdjument-Bromage; Paul Tempst; D. Gary Gilliland; Yi Zhang; William G. Kaelin

Changes in histone methylation status regulate chromatin structure and DNA-dependent processes such as transcription. Recent studies indicate that, analogous to other histone modifications, histone methylation is reversible. Retinoblastoma binding protein 2 (RBP2), a nuclear protein implicated in the regulation of transcription and differentiation by the retinoblastoma tumor suppressor protein, contains a JmjC domain recently defined as a histone demethylase signature motif. Here we report that RBP2 is a demethylase that specifically catalyzes demethylation on H3K4, whose methylation is normally associated with transcriptionally active genes. RBP2-/- mouse cells displayed enhanced transcription of certain cytokine genes, which, in the case of SDF1, was associated with increased H3K4 trimethylation. Furthermore, RBP2 specifically demethylated H3K4 in biochemical and cell-based assays. These studies provide mechanistic insights into transcriptional regulation by RBP2 and provide the first example of a mammalian enzyme capable of erasing trimethylated H3K4.


Cell Stem Cell | 2007

FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System

Zuzana Tothova; D. Gary Gilliland

The forkhead O (FoxO) family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation, apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the hematopoietic stem cell (HSC) compartment through regulation of HSC response to physiologic oxidative stress, quiescence, and survival. These observations link FoxO function in mammalian systems with the evolutionarily conserved role of FoxO in promotion of stress resistance and longevity in lower phylogenetic systems. Furthermore, these findings have implications for aging in higher organisms and in malignant stem cell biology, and suggest that FoxOs may play an important role in the maintenance and integrity of stem cell compartments in a broad spectrum of tissues.


Cell Stem Cell | 2010

mTOR Activation Induces Tumor Suppressors that Inhibit Leukemogenesis and Deplete Hematopoietic Stem Cells after Pten Deletion

Jae Y. Lee; Daisuke Nakada; Ömer H. Yilmaz; Zuzana Tothova; Nancy M. Joseph; Megan S. Lim; D. Gary Gilliland; Sean J. Morrison

Pten deficiency depletes hematopoietic stem cells (HSCs) but expands leukemia-initiating cells, and the mTOR inhibitor, rapamycin, blocks these effects. Understanding the opposite effects of mTOR activation on HSCs versus leukemia-initiating cells could improve antileukemia therapies. We found that the depletion of Pten-deficient HSCs was not caused by oxidative stress and could not be blocked by N-acetyl-cysteine. Instead, Pten deletion induced, and rapamycin attenuated, the expression of p16(Ink4a) and p53 in HSCs, and p19(Arf) and p53 in other hematopoietic cells. p53 suppressed leukemogenesis and promoted HSC depletion after Pten deletion. p16(Ink4a) also promoted HSC depletion but had a limited role suppressing leukemogenesis. p19(Arf) strongly suppressed leukemogenesis but did not deplete HSCs. Secondary mutations attenuated this tumor suppressor response in some leukemias that arose after Pten deletion. mTOR activation therefore depletes HSCs by a tumor suppressor response that is attenuated by secondary mutations in leukemogenic clones.


Nature Chemical Biology | 2013

Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

Kimberly A. Hartwell; Peter Miller; Siddhartha Mukherjee; Alissa R. Kahn; Alison L. Stewart; David J. Logan; Joseph Negri; Mildred Duvet; Marcus Järås; Rishi V. Puram; Vlado Dančík; Fatima Al-Shahrour; Thomas Kindler; Zuzana Tothova; Shrikanta Chattopadhyay; Thomas Hasaka; Rajiv Narayan; Mingji Dai; Christina Huang; Sebastian Shterental; Lisa P. Chu; J. Erika Haydu; Jae Hung Shieh; David P. Steensma; Benito Munoz; Joshua Bittker; Alykhan F. Shamji; Paul A. Clemons; Nicola Tolliday; Anne E. Carpenter

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Cancer Discovery | 2016

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation

Shannon Elf; Nouran S. Abdelfattah; Edwin Chen; Javier Perales-Patón; Emily A. Rosen; Amy Ko; Fabian Peisker; Natalie Florescu; Silvia Giannini; Ofir Wolach; Elizabeth A. Morgan; Zuzana Tothova; Julie-Aurore Losman; Rebekka K. Schneider; Fatima Al-Shahrour; Ann Mullally

UNLABELLED Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN), but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR-mutant MPN. We further show that the thrombopoietin receptor MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. SIGNIFICANCE The mechanism by which CALR mutations induce MPN remains unknown. In this report, we show that the positive charge of the CALR mutant C-terminus is necessary to transform hematopoietic cells by enabling binding between mutant CALR and the thrombopoietin receptor MPL.


Blood | 2011

Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification

Melanie G. Cornejo; Vinciane Mabialah; Stephen M. Sykes; Tulasi Khandan; Cristina Lo Celso; Cécile K. Lopez; Paola Rivera-Munoz; Philippe Rameau; Zuzana Tothova; Ronald A. DePinho; David T. Scadden; D. Gary Gilliland; Thomas Mercher

The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.

Collaboration


Dive into the Zuzana Tothova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dana E. Cullen

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Fröhling

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge