Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramzi Nasir is active.

Publication


Featured researches published by Ramzi Nasir.


Journal of Medical Genetics | 2009

Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders

David T. Miller; Yiping Shen; Lauren A. Weiss; Joshua M. Korn; Irina Anselm; Carolyn Bridgemohan; Gerald F. Cox; Hope Dickinson; Jennifer K. Gentile; David J. Harris; Vijay Hegde; Rachel Hundley; Omar Khwaja; Sanjeev V. Kothare; Christina Luedke; Ramzi Nasir; Annapurna Poduri; Kiran Prasad; Peter Raffalli; Ann Reinhard; Sharon E. Smith; Magdi M. Sobeih; Janet S. Soul; Joan M. Stoler; Masanori Takeoka; Wen-Hann Tan; Joseph V. Thakuria; Robert Wolff; Roman Yusupov; James F. Gusella

Background: Segmental duplications at breakpoints (BP4–BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or electroencephalogram (EEG) abnormalities. Patients: DNA samples from 1445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children’s Hospital Boston and DNA samples from 1441 individuals with autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. Results: We report the clinical features of five patients with a BP4–BP5 deletion, three with a BP4–BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4–BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, attention deficit hyperactivity disorder, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4–BP5 covers ∼1.5 Mb (chr15:28.719–30.298 Mb) and includes six reference genes and 1 miRNA gene, while the smaller duplications cover ∼500 kb (chr15:28.902–29.404 Mb) and contain three reference genes and one miRNA gene. The BP4–BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. Conclusions: The phenotype of chromosome 15q13.2q13.3 BP4–BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying aetiology of this syndrome.


Pediatrics | 2010

Clinical genetic testing for patients with autism spectrum disorders

Yiping Shen; Kira A. Dies; Ingrid A. Holm; Carolyn Bridgemohan; Magdi M. Sobeih; Elizabeth Caronna; Karen J. Miller; Jean A. Frazier; Iris Silverstein; Jonathan Picker; Laura Weissman; Peter Raffalli; Shafali S. Jeste; Laurie A. Demmer; Heather Peters; Stephanie J. Brewster; Sara J J Kowalczyk; Beth Rosen-Sheidley; Caroline McGowan; Andrew Walter Duda; Sharyn Lincoln; Kathryn R. Lowe; Alison Schonwald; Michael Robbins; Fuki M. Hisama; Robert Wolff; Ronald Becker; Ramzi Nasir; David K. Urion; Jeff M. Milunsky

BACKGROUND: Multiple lines of evidence indicate a strong genetic contribution to autism spectrum disorders (ASDs). Current guidelines for clinical genetic testing recommend a G-banded karyotype to detect chromosomal abnormalities and fragile X DNA testing, but guidelines for chromosomal microarray analysis have not been established. PATIENTS AND METHODS: A cohort of 933 patients received clinical genetic testing for a diagnosis of ASD between January 2006 and December 2008. Clinical genetic testing included G-banded karyotype, fragile X testing, and chromosomal microarray (CMA) to test for submicroscopic genomic deletions and duplications. Diagnostic yield of clinically significant genetic changes was compared. RESULTS: Karyotype yielded abnormal results in 19 of 852 patients (2.23% [95% confidence interval (CI): 1.73%–2.73%]), fragile X testing was abnormal in 4 of 861 (0.46% [95% CI: 0.36%–0.56%]), and CMA identified deletions or duplications in 154 of 848 patients (18.2% [95% CI: 14.76%–21.64%]). CMA results for 59 of 848 patients (7.0% [95% CI: 5.5%–8.5%]) were considered abnormal, which includes variants associated with known genomic disorders or variants of possible significance. CMA results were normal in 10 of 852 patients (1.2%) with abnormal karyotype due to balanced rearrangements or unidentified marker chromosome. CMA with whole-genome coverage and CMA with targeted genomic regions detected clinically relevant copy-number changes in 7.3% (51 of 697) and 5.3% (8 of 151) of patients, respectively, both higher than karyotype. With the exception of recurrent deletion and duplication of chromosome 16p11.2 and 15q13.2q13.3, most copy-number changes were unique or identified in only a small subset of patients. CONCLUSIONS: CMA had the highest detection rate among clinically available genetic tests for patients with ASD. Interpretation of microarray data is complicated by the presence of both novel and recurrent copy-number variants of unknown significance. Despite these limitations, CMA should be considered as part of the initial diagnostic evaluation of patients with ASD.


Neuron | 2013

Using Whole-Exome Sequencing to Identify Inherited Causes of Autism

Maria H. Chahrour; Michael E. Coulter; Sarn Jiralerspong; Kazuko Okamura-Ikeda; Klaus Schmitz-Abe; David A. Harmin; Mazhar Adli; Athar N. Malik; Alissa M. D’Gama; Elaine T. Lim; Stephan J. Sanders; Ganesh H. Mochida; Jennifer N. Partlow; Christine M. Sunu; Jillian M. Felie; Jacqueline Rodriguez; Ramzi Nasir; Janice Ware; Robert M. Joseph; R. Sean Hill; Benjamin Y. Kwan; Muna Al-Saffar; Nahit Motavalli Mukaddes; Asif Hashmi; Soher Balkhy; Generoso G. Gascon; Fuki M. Hisama; Elaine LeClair; Annapurna Poduri; Ozgur Oner

Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.


American Journal of Medical Genetics | 2010

Deletions of NRXN1 (Neurexin-1) Predispose to a Wide Spectrum of Developmental Disorders

Michael S L Ching; Yiping Shen; Wen-Hann Tan; Shafali S. Jeste; Eric M. Morrow; Xiaoli Chen; Nahit Motavalli Mukaddes; Seung Yun Yoo; Ellen Hanson; Rachel Hundley; Christina Austin; Ronald Becker; Gerard T. Berry; Katherine Driscoll; Elizabeth C. Engle; Sandra L. Friedman; James F. Gusella; Fuki M. Hisama; Mira Irons; Tina Lafiosca; Elaine LeClair; David T. Miller; Michael Neessen; Jonathan Picker; Leonard Rappaport; Cynthia M. Rooney; Dean Sarco; Joan M. Stoler; Christopher A. Walsh; Robert Wolff

Research has implicated mutations in the gene for neurexin‐1 (NRXN1) in a variety of conditions including autism, schizophrenia, and nicotine dependence. To our knowledge, there have been no published reports describing the breadth of the phenotype associated with mutations in NRXN1. We present a medical record review of subjects with deletions involving exonic sequences of NRXN1. We ascertained cases from 3,540 individuals referred clinically for comparative genomic hybridization testing from March 2007 to January 2009. Twelve subjects were identified with exonic deletions. The phenotype of individuals with NRXN1 deletion is variable and includes autism spectrum disorders, mental retardation, language delays, and hypotonia. There was a statistically significant increase in NRXN1 deletion in our clinical sample compared to control populations described in the literature (P = 8.9 × 10−7). Three additional subjects with NRXN1 deletions and autism were identified through the Homozygosity Mapping Collaborative for Autism, and this deletion segregated with the phenotype. Our study indicates that deletions of NRXN1 predispose to a wide spectrum of developmental disorders.


Journal of Developmental and Behavioral Pediatrics | 2010

Cognitive and behavioral characterization of 16p11.2 deletion syndrome.

Ellen Hanson; Ramzi Nasir; Alexa Fong; Alyss Lian; Rachel Hundley; Yiping Shen; Bai-Lin Wu; Ingrid A. Holm; David T. Miller

Objective: To describe cognitive and behavioral features of patients with chromosome 16p11.2 deletion syndrome, a recently identified and common genetic cause of neurodevelopmental disability, especially autism spectrum disorder (ASD). Method: Twenty-one patients with 16p11.2 deletion were evaluated by medical record review. A subset of 11 patients consented to detailed cognitive, behavioral, and autism diagnostic assessment. Results: Patients with 16p11.2 deletion had varying levels of intellectual disability, variable adaptive skills, and a high incidence of language delay. Attention issues were not as frequent as had been reported in previous clinical reports. Atypical language, reduced social skills, and maladaptive behaviors were common, as was diagnosis of ASD. Based on medical record review, 7 of 21 patients (33%) had an ASD diagnosis. Among patients receiving detailed phenotyping, 3 of 11 (27%) met full criteria (met cutoff scores on both Autism Diagnostic Observation Schedule and Autism Diagnostic Interview) for an ASD diagnosis, whereas 6 other patients (55%) met criteria for ASD on either the Autism Diagnostic Observation Schedule or the Autism Diagnostic Interview, but not both measures. Conclusions: Rates of ASD were similar to previous reports that are based on medical record reviews, but formal assessment revealed that a majority of patients with 16p11.2 deletion demonstrate features of ASD beyond simple language impairment. All patients with 16p11.2 deletion should receive formal neurodevelopmental evaluation including measures to specifically assess cognitive, adaptive, language, and psychiatric/behavioral issues. Clinical evaluation of this patient population should always include assessment by Autism Diagnostic Interview and Autism Diagnostic Observation Schedule to detect behaviors related to ASD and possible ASD diagnosis.


Neurology | 2013

Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans.

L. Benjamin Hills; Amira Masri; Kotaro Konno; Wataru Kakegawa; Anh Thu N Lam; Elizabeth Lim-Melia; Nandini Chandy; R. Sean Hill; Jennifer N. Partlow; Muna Al-Saffar; Ramzi Nasir; Joan M. Stoler; A. James Barkovich; Masahiko Watanabe; Michisuke Yuzaki; Ganeshwaran H. Mochida

Objective: To identify the genetic cause of a syndrome causing cerebellar ataxia and eye movement abnormalities. Methods: We identified 2 families with cerebellar ataxia, eye movement abnormalities, and global developmental delay. We performed genetic analyses including single nucleotide polymorphism genotyping, linkage analysis, array comparative genomic hybridization, quantitative PCR, and Sanger sequencing. We obtained eye movement recordings of mutant mice deficient for the ortholog of the identified candidate gene, and performed immunohistochemistry using human and mouse brain specimens. Results: All affected individuals had ataxia, eye movement abnormalities, most notably tonic upgaze, and delayed speech and cognitive development. Homozygosity mapping identified the disease locus on chromosome 4q. Within this region, a homozygous deletion of GRID2 exon 4 in the index family and compound heterozygous deletions involving GRID2 exon 2 in the second family were identified. Grid2-deficient mice showed larger spontaneous and random eye movements compared to wild-type mice. In developing mouse and human cerebella, GRID2 localized to the Purkinje cell dendritic spines. Brain MRI in 2 affected children showed progressive cerebellar atrophy, which was more severe than that of Grid2-deficient mice. Conclusions: Biallelic deletions of GRID2 lead to a syndrome of cerebellar ataxia and tonic upgaze in humans. The phenotypic resemblance and similarity in protein expression pattern between humans and mice suggest a conserved role for GRID2 in the synapse organization between parallel fibers and Purkinje cells. However, the progressive and severe cerebellar atrophy seen in the affected individuals could indicate an evolutionarily unique role for GRID2 in the human cerebellum.


Annals of Neurology | 2010

Developmental and Degenerative Features in a Complicated Spastic Paraplegia

M. Chiara Manzini; Anna Rajab; Thomas M. Maynard; Ganeshwaran H. Mochida; Wen-Hann Tan; Ramzi Nasir; R. Sean Hill; Danielle Gleason; Muna Al Saffar; Jennifer N. Partlow; Brenda J. Barry; Mike Vernon; Anthony-Samuel LaMantia; Christopher A. Walsh

We sought to explore the genetic and molecular causes of Troyer syndrome, one of several complicated hereditary spastic paraplegias (HSPs). Troyer syndrome had been thought to be restricted to the Amish; however, we identified 2 Omani families with HSP, short stature, dysarthria and developmental delay—core features of Troyer syndrome—and a novel mutation in the SPG20 gene, which is also mutated in the Amish. In addition, we analyzed SPG20 expression throughout development to infer how disruption of this gene might generate the constellation of developmental and degenerative Troyer syndrome phenotypes.


American Journal of Human Genetics | 2015

Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination

Tojo Nakayama; Almundher Al-Maawali; Malak El-Quessny; Anna Rajab; Samir Khalil; Joan M. Stoler; Wen-Hann Tan; Ramzi Nasir; Klaus Schmitz-Abe; R. Sean Hill; Jennifer N. Partlow; Muna Al-Saffar; Sarah Servattalab; Christopher M. LaCoursiere; Dimira Tambunan; Michael E. Coulter; Princess C. Elhosary; Grzegorz Gorski; A. James Barkovich; Kyriacos Markianos; Annapurna Poduri; Ganeshwaran H. Mochida

Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2s isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

Qing Ouyang; Tojo Nakayama; Ozan Baytaş; Shawn M. Davidson; Chendong Yang; Michael Schmidt; Sofia B. Lizarraga; Sasmita Mishra; Malak Ei-Quessny; Saima Niaz; Mirrat Gul Butt; Syed Imran Murtaza; Afzal Javed; Haroon Rashid Chaudhry; Dylan J. Vaughan; R. Sean Hill; Jennifer N. Partlow; Seung Yun Yoo; Anh Thu N Lam; Ramzi Nasir; Muna Al-Saffar; A. James Barkovich; Matthew Schwede; Shailender Nagpal; Anna Rajab; Ralph J. DeBerardinis; David E. Housman; Ganeshwaran H. Mochida; Eric M. Morrow

Significance We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in a neurological syndrome involving intellectual disability, reduced brain growth, and progressive motor symptoms. We show that the mutations inactivate the enzyme. GPT2 catalyzes the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. The GPT2 gene demonstrates expression in brain postnatally, and the protein localizes to mitochondria. As in humans, Gpt2-null mice exhibit reduced brain growth. Furthermore, mutant mouse brains show abnormal metabolite levels, including in pathways involving amino acid metabolism, the TCA cycle, and neuroprotective mechanisms. Our study identifies GPT2 as an important mitochondrial enzyme in disease that has general relevance to developmental and potentially to neurodegenerative mechanisms. Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.


Libyan Journal of Medicine | 2013

Diagnostic delay of autism in Jordan: review of 84 cases

Amira Masri; Najati Al Suluh; Ramzi Nasir

Little research is available on autism spectrum disorders (ASDs) epidemiology and clinical practice in developing countries. Studies from the Middle East are particularly rare. In Western countries, autism is regarded as highly influenced by genetics, although genetic abnormalities are only identified in a minority of patients. There is increasing evidence that the high rates of consanguinity in the Middle East predispose to an autosomal recessive pattern of inheritance of autism. In Jordan, the incidence of autosomal recessive disorders is high, and contributes significantly to the etiologies of global developmental delay. However, it is not known if autosomal recessive disorders contribute to the incidence of autism in Jordan. (Published: 19 August 2013) Citation: Libyan J Med 2013, 8 : 21725 - http://dx.doi.org/10.3402/ljm.v8i0.21725

Collaboration


Dive into the Ramzi Nasir's collaboration.

Top Co-Authors

Avatar

Yiping Shen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David T. Miller

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jennifer N. Partlow

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

R. Sean Hill

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Ellen Hanson

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan M. Stoler

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Wen-Hann Tan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Muna Al-Saffar

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge