Rance Nault
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rance Nault.
Toxicology and Applied Pharmacology | 2013
Rance Nault; Suntae Kim; Timothy R. Zacharewski
Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague-Dawley rats were gavaged daily with 20μg/kg TCDD for 1, 3 and 5days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7days after a single oral gavage of 30μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets.
Toxicological Sciences | 2016
Rance Nault; Kelly A. Fader; Mathew P. Kirby; Shaimaa Ahmed; Jason Matthews; A. Daniel Jones; Sophia Y. Lunt; Timothy R. Zacharewski
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits dose-dependent hepatotoxicity that includes fat accumulation, inflammation, and fibrosis that may progress to hepatocellular carcinoma. To further investigate these effects, RNA-Seq data were integrated with computationally identified putative dioxin response elements, and complementary targeted metabolomic and aryl hydrocarbon receptor (AhR) ChIP-Seq data from female C57BL/6 mice gavaged with TCDD every 4 days for 28 days. Data integration using CytoKEGG with manual curation identified dose-dependent alterations in central carbon and amino acid metabolism. More specifically, TCDD increased pyruvate kinase isoform M2 (PKM2) gene and protein expression. PKM2 has lower catalytic activity resulting in decreased glycolytic flux and the accumulation of upstream intermediates that were redirected to the pentose phosphate pathway and serine/folate biosynthesis, 2 important NADPH producing pathways stemming from glycolysis. In addition, the GAC:KGA glutaminase (GLS1) protein isoform ratio was increased, consistent with increases in glutaminolysis which serves an anaplerotic role for the TCA cycle and compensates for the reduced glycolytic flux. Collectively, gene expression, protein, and metabolite changes were indicative of increases in NADPH production in support of cytochrome P450 activity and ROS defenses. This AhR-mediated metabolic reprogramming is similar to the Warburg effect and represents a novel advantageous defense mechanism to increase anti-oxidant capacity in normal differentiated hepatocytes.
Toxicological Sciences | 2015
Kelly A. Fader; Rance Nault; Dustin A. Ammendolia; Jack R. Harkema; Kurt J. Williams; Robert B. Crawford; Norbert E. Kaminski; Dave Potter; Bonnie Sharratt; Timothy R. Zacharewski
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor agonist that elicits dose-dependent hepatic fat accumulation and inflammation that can progress to steatohepatitis. To investigate intestine-liver interactions that contribute to TCDD-elicited steatohepatitis, we examined the dose-dependent effects of TCDD (0.01, 0.03, 0.1, 0.3, 1, 3, 10, or 30 µg/kg) on jejunal epithelial gene expression in C57BL/6 mice orally gavaged every 4 days for 28 days. Agilent 4x44K whole-genome microarray analysis of the jejunal epithelium identified 439 differentially expressed genes (|fold change| ≥ 1.5, P1(t) ≥ 0.999) across 1 or more doses, many related to lipid metabolism and immune system processes. TCDD-elicited differentially expressed genes were associated with lipolysis, fatty acid/cholesterol absorption and transport, the Kennedy pathway, and retinol metabolism, consistent with increased hepatic fat accumulation. Moreover, several major histocompatibility complex (MHC) class II genes (H2-Aa, H2-Ab1, H2-DMb1, Cd74) were repressed, coincident with decreased macrophage and dendritic cell levels in the lamina propria, suggesting migration of antigen-presenting cells out of the intestine. In contrast, hepatic RNA-Seq analysis identified increased expression of MHC class II genes, as well as chemokines and chemokine receptors involved in macrophage recruitment (Ccr1, Ccr5, Ccl5, Cx3cr1), consistent with hepatic F4/80 labeling and macrophage infiltration into the liver. Collectively, these results suggest TCDD elicits changes that support hepatic lipid accumulation, macrophage migration, and the progression of hepatic steatosis to steatohepatitis.
American Journal of Respiratory Cell and Molecular Biology | 2016
Chee Bing Ong; Kazuyoshi Kumagai; Phillip T. Brooks; Christina Brandenberger; Ryan P. Lewandowski; Daven N. Jackson-Humbles; Rance Nault; Timothy R. Zacharewski; James G. Wagner; Jack R. Harkema
Inhalation exposures to ozone commonly encountered in photochemical smog cause airway injury and inflammation. Elevated ambient ozone concentrations have been epidemiologically associated with nasal airway activation of neutrophils and eosinophils. In the present study, we elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and associated epithelial changes in mice repeatedly exposed to ozone. Lymphoid cell-sufficient C57BL/6 mice were exposed to 0 or 0.5 parts per million (ppm) ozone for 1, 2, 4, or 9 consecutive weekdays (4 h/d). Lymphoid cell-deficient, Rag2(-/-)Il2rg(-/-) mice were similarly exposed for 9 weekdays. Nasal tissues were taken at 2 or 24 hours after exposure for morphometric and gene expression analyses. C57BL/6 mice exposed to ozone for 1 day had acute neutrophilic rhinitis, with airway epithelial necrosis and overexpression of mucosal Ccl2 (MCP-1), Ccl11 (eotaxin), Cxcl1 (KC), Cxcl2 (MIP-2), Hmox1, Il1b, Il5, Il6, Il13, and Tnf mRNA. In contrast, 9-day ozone exposure elicited type 2 immune responses in C57BL/6 mice, with mucosal mRNA overexpression of Arg1, Ccl8 (MCP-2), Ccl11, Chil4 (Ym2), Clca1 (Gob5), Il5, Il10, and Il13; increased density of mucosal eosinophils; and nasal epithelial remodeling (e.g., hyperplasia/hypertrophy, mucous cell metaplasia, hyalinosis, and increased YM1/YM2 proteins). Rag2(-/-)Il2rg(-/-) mice exposed to ozone for 9 days, however, had no nasal pathology or overexpression of transcripts related to type 2 immunity. These results provide a plausible paradigm for the activation of eosinophilic inflammation and type 2 immunity found in the nasal airways of nonatopic individuals subjected to episodic exposures to high ambient ozone.
Blood | 2016
Nikita Joshi; Anna K. Kopec; Jessica L. Ray; Holly Cline-Fedewa; Atta Nawabi; Timothy Schmitt; Rance Nault; Timothy R. Zacharewski; Cheryl E. Rockwell; Matthew J. Flick; James P. Luyendyk
Coagulation cascade activation and fibrin deposits have been implicated or observed in diverse forms of liver damage. Given that fibrin amplifies pathological inflammation in several diseases through the integrin receptor αMβ2, we tested the hypothesis that disruption of the fibrin(ogen)-αMβ2 interaction in Fibγ(390-396A) mice would reduce hepatic inflammation and fibrosis in an experimental setting of chemical liver injury. Contrary to our hypothesis, α-naphthylisothiocyanate (ANIT)-induced liver fibrosis increased in Fibγ(390-396A) mice, whereas inflammatory cytokine expression and hepatic necrosis were similar to ANIT-challenged wild-type (WT) mice. Increased fibrosis in Fibγ(390-396A) mice appeared to be independent of coagulation factor 13 (FXIII) transglutaminase, as ANIT challenge in FXIII-deficient mice resulted in a distinct pathological phenotype characterized by increased hepatic necrosis. Rather, bile duct proliferation underpinned the increased fibrosis in ANIT-exposed Fibγ(390-396A) mice. The mechanism of fibrin-mediated fibrosis was linked to interferon (IFN)γ induction of inducible nitric oxide synthase (iNOS), a gene linked to bile duct hyperplasia and liver fibrosis. Expression of iNOS messenger RNA was significantly increased in livers of ANIT-exposed Fibγ(390-396A) mice. Fibrin(ogen)-αMβ2 interaction inhibited iNOS induction in macrophages stimulated with IFNγ in vitro and ANIT-challenged IFNγ-deficient mice had reduced iNOS induction, bile duct hyperplasia, and liver fibrosis. Further, ANIT-induced iNOS expression, liver fibrosis, and bile duct hyperplasia were significantly reduced in WT mice administered leukadherin-1, a small molecule that allosterically enhances αMβ2-dependent cell adhesion to fibrin. These studies characterize a novel mechanism whereby the fibrin(ogen)-integrin-αMβ2 interaction reduces biliary fibrosis and suggests a novel putative therapeutic target for this difficult-to-treat fibrotic disease.
Scientific Reports | 2017
Kelly A. Fader; Rance Nault; Chen Zhang; Kazuyoshi Kumagai; Jack R. Harkema; Timothy R. Zacharewski
Abstract2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant which elicits hepatotoxicity through activation of the aryl hydrocarbon receptor (AhR). Male C57BL/6 mice orally gavaged with TCDD (0.01–30 µg/kg) every 4 days for 28 days exhibited bile duct proliferation and pericholangitis. Mass spectrometry analysis detected a 4.6-fold increase in total hepatic bile acid levels, despite the coordinated repression of genes involved in cholesterol and primary bile acid biosynthesis including Cyp7a1. Specifically, TCDD elicited a >200-fold increase in taurolithocholic acid (TLCA), a potent G protein-coupled bile acid receptor 1 (GPBAR1) agonist associated with bile duct proliferation. Increased levels of microbial bile acid metabolism loci (bsh, baiCD) are consistent with accumulation of TLCA and other secondary bile acids. Fecal bile acids decreased 2.8-fold, suggesting enhanced intestinal reabsorption due to induction of ileal transporters (Slc10a2, Slc51a) and increases in whole gut transit time and intestinal permeability. Moreover, serum bile acids were increased 45.4-fold, consistent with blood-to-hepatocyte transporter repression (Slco1a1, Slc10a1, Slco2b1, Slco1b2, Slco1a4) and hepatocyte-to-blood transporter induction (Abcc4, Abcc3). These results suggest that systemic alterations in enterohepatic circulation, as well as host and microbiota bile acid metabolism, favor bile acid accumulation that contributes to AhR-mediated hepatotoxicity.
Chemical Research in Toxicology | 2017
Rance Nault; Kelly A. Fader; Todd A. Lydic; Timothy R. Zacharewski
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic steatosis mediated by the aryl hydrocarbon receptor. To further characterize TCDD-elicited hepatic lipid accumulation, mice were gavaged with TCDD every 4 days for 28 days. Liver samples were examined using untargeted lipidomics with structural confirmation of lipid species by targeted high-resolution MS/MS, and data were integrated with complementary RNA-Seq analyses. Approximately 936 unique spectral features were detected, of which 379 were confirmed as unique lipid species. Both male and female samples exhibited similar qualitative changes (lipid species) but differed in quantitative changes. A shift to higher mass lipid species was observed, indicative of increased free fatty acid (FFA) packaging. For example, of the 13 lipid classes examined, triglycerides increased from 46 to 48% of total lipids to 68-83% in TCDD treated animals. Hepatic cholesterol esters increased 11.3-fold in male mice with moieties consisting largely of dietary fatty acids (FAs) (i.e., linolenate, palmitate, and oleate). Phosphatidylserines, phosphatidylethanolamines, phosphatidic acids, and cardiolipins decreased 4.1-, 5.0-, 5.4- and 7.4-fold, respectively, while ceramides increased 6.6-fold. Accordingly, the integration of lipidomic data with differential gene expression associated with lipid metabolism suggests that in addition to the repression of de novo fatty acid synthesis and β-oxidation, TCDD also increased hepatic uptake and packaging of lipids, while inhibiting VLDL secretion, consistent with hepatic fat accumulation and the progression to steatohepatitis with fibrosis.
Toxicologic Pathology | 2015
Rance Nault; Dirk Colbry; Christina Brandenberger; Jack R. Harkema; Timothy R. Zacharewski
High-resolution digitalizing of histology slides facilitates the development of computational alternatives to manual quantitation of features of interest. We developed a MATLAB-based quantitative histological analysis tool (QuHAnT) for the high-throughput assessment of distinguishable histological features. QuHAnT validation was demonstrated by comparison with manual quantitation using liver sections from mice orally gavaged with sesame oil vehicle or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 0.001–30 μg/kg) every 4 days for 28 days, which elicits hepatic steatosis with mild fibrosis. A quality control module of QuHAnT reduced the number of quantifiable Oil Red O (ORO)-stained images from 3,123 to 2,756. Increased ORO staining was measured at 10 and 30 μg/kg TCDD with a high correlation between manual and computational volume densities (Vv), although the dynamic range of QuHAnT was 10-fold greater. Additionally, QuHAnT determined the size of each ORO vacuole, which could not be accurately quantitated by visual examination or manual point counting. PicroSirius Red quantitation demonstrated superior collagen deposition detection due to the ability to consider all images within each section. QuHAnT dramatically reduced analysis time and facilitated the comprehensive assessment of features improving accuracy and sensitivity and represents a complementary tool for tissue/cellular features that are difficult and tedious to assess via subjective or semiquantitative methods.
Toxicological Sciences | 2013
Anna K. Kopec; Darrell R. Boverhof; Rance Nault; Jack R. Harkema; Colleen Tashiro; Dave Potter; Bonnie Sharratt; Brock Chittim; Timothy R. Zacharewski
Acute exposure to hepatotoxic doses of 2,3,7,8-tetrachloro- dibenzo-p-dioxin (TCDD) in mice is characterized by differential gene expression that can be phenotypically anchored to elevated levels of serum alanine aminotransferase, increased relative liver weights, hepatic steatosis, inflammation, and hepatocellular necrosis. Unlike most studies that focus on acute exposure effects, this study evaluated the long-term effects of a single oral gavage of 30 μg/kg TCDD at 1, 4, 12, 24, 36, and 72 weeks postdose in ovariectomized C57BL/6 mice. Hepatic TCDD levels were almost completely eliminated by 24 weeks with a calculated half-life of 12 days. Hepatic gene expression analysis identified 395 unique differentially expressed genes between 1 and 12 weeks that decreased to ≤ 8 by 72 weeks, consistent with the minimal hepatic TCDD levels. Hepatic vacuolization, characteristic of short-term exposure, subsided by 4 weeks. Similarly, TCDD-elicited hepatic necrosis and inflammation dissipated by 1 week. Collectively, these results suggest that TCDD-elicited histologic and gene expression responses can be correlated to elevated hepatic TCDD levels, which, once eliminated, elicit minimal hepatic gene expression and histologic alterations.
Toxicology and Applied Pharmacology | 2017
Natalia Kovalova; Rance Nault; Robert Crawford; Timothy R. Zacharewski; Norbert E. Kaminski
Abstract 2,3,7,8‐Tetrachlorodibenzo‐p‐dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD‐induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized that TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell‐specific mechanism that is involved in TCDD‐induced immunosuppression. RNA sequencing (RNA‐Seq) was used to identify B cell‐specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD‐elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24‐h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine‐cytokine receptor interaction, ECM‐receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell‐cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species‐specific gene expression changes. HighlightsKovalova TAAP Highlights Nov. 2016RNA‐Seq identified TCDD‐induced gene expression in PWM‐activated primary B cells.TCDD elicited differential expression of 515 human, 2371 mouse and 712 rat orthologs.28 orthologs were differentially expressed in response to TCDD in all three species.TCDD elicits mostly species‐specific gene expression changes in activated B cells.