Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randall S. Hewes is active.

Publication


Featured researches published by Randall S. Hewes.


Nature Neuroscience | 2005

Activity-dependent liberation of synaptic neuropeptide vesicles

Dinara Shakiryanova; Arvonn Tully; Randall S. Hewes; David L. Deitcher; Edwin S. Levitan

Despite the importance of neuropeptide release, which is evoked by long bouts of action potential activity and which regulates behavior, peptidergic vesicle movement has not been examined in living nerve terminals. Previous in vitro studies have found that secretory vesicle motion at many sites of release is constitutive: Ca2+ does not affect the movement of small synaptic vesicles in nerve terminals or the movement of large dense core vesicles in growth cones and endocrine cells. However, in vivo imaging of a neuropeptide, atrial natriuretic factor, tagged with green fluorescent protein in larval Drosophila melanogaster neuromuscular junctions shows that peptidergic vesicle behavior in nerve terminals is sensitive to activity-induced Ca2+ influx. Specifically, peptidergic vesicles are immobile in resting synaptic boutons but become mobile after seconds of stimulation. Vesicle movement is undirected, occurs without the use of axonal transport motors or F-actin, and aids in the depletion of undocked neuropeptide vesicles. Peptidergic vesicle mobilization and post-tetanic potentiation of neuropeptide release are sustained for minutes.


The Journal of Neuroscience | 2007

Presynaptic Ryanodine Receptor-Activated Calmodulin Kinase II Increases Vesicle Mobility and Potentiates Neuropeptide Release

Dinara Shakiryanova; Markus K. Klose; Yi Zhou; Tingting Gu; David L. Deitcher; Harold L. Atwood; Randall S. Hewes; Edwin S. Levitan

Although it has been postulated that vesicle mobility is increased to enhance release of transmitters and neuropeptides, the mechanism responsible for increasing vesicle motion in nerve terminals and the effect of perturbing this mobilization on synaptic plasticity are unknown. Here, green fluorescent protein-tagged dense-core vesicles (DCVs) are imaged in Drosophila motor neuron terminals, where DCV mobility is increased for minutes after seconds of activity. Ca2+-induced Ca2+ release from presynaptic endoplasmic reticulum (ER) is shown to be necessary and sufficient for sustained DCV mobilization. However, this ryanodine receptor (RyR)-mediated effect is short-lived and only initiates signaling. Calmodulin kinase II (CaMKII), which is not activated directly by external Ca2+ influx, then acts as a downstream effector of released ER Ca2+. RyR and CaMKII are essential for post-tetanic potentiation of neuropeptide secretion. Therefore, the presynaptic signaling pathway for increasing DCV mobility is identified and shown to be required for synaptic plasticity.


The Journal of Experimental Biology | 2006

Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes

Sebastien A. Gauthier; Randall S. Hewes

SUMMARY The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting.


Genetics | 2008

A Drosophila Gain-of-Function Screen for Candidate Genes Involved in Steroid-Dependent Neuroendocrine Cell Remodeling

Tao Zhao; Tingting Gu; Heather C. Rice; Kathleen L. McAdams; Kimberly M. Roark; Kaylan Lawson; Sebastien A. Gauthier; Kathleen L. Reagan; Randall S. Hewes

The normal functioning of neuroendocrine systems requires that many neuropeptidergic cells change, to alter transmitter identity and concentration, electrical properties, and cellular morphology in response to hormonal cues. During insect metamorphosis, a pulse of circulating steroids, ecdysteroids, governs the dramatic remodeling of larval neurons to serve adult-specific functions. To identify molecular mechanisms underlying metamorphic remodeling, we conducted a neuropeptidergic cell-targeted, gain-of-function genetic screen. We screened 6097 lines. Each line permitted Gal4-regulated transcription of flanking genes. A total of 58 lines, representing 51 loci, showed defects in neuropeptide-mediated developmental transitions (ecdysis or wing expansion) when crossed to the panneuropeptidergic Gal4 driver, 386Y-Gal4. In a secondary screen, we found 29 loci that produced wing expansion defects when crossed to a crustacean cardioactive peptide (CCAP)/bursicon neuron-specific Gal4 driver. At least 14 loci disrupted the formation or maintenance of adult-specific CCAP/bursicon cell projections during metamorphosis. These include components of the insulin and epidermal growth factor signaling pathways, an ecdysteroid-response gene, cabut, and an ubiquitin-specific protease gene, fat facets, with known functions in neuronal development. Several additional genes, including three micro-RNA loci and two factors related to signaling by Myb-like proto-oncogenes, have not previously been implicated in steroid signaling or neuronal remodeling.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Synaptic neuropeptide release induced by octopamine without Ca2+ entry into the nerve terminal

Dinara Shakiryanova; Geoffrey M. Zettel; Tingting Gu; Randall S. Hewes; Edwin S. Levitan

Synaptic release of neurotransmitters is evoked by activity-dependent Ca2+ entry into the nerve terminal. However, here it is shown that robust synaptic neuropeptide release from Drosophila motoneurons is evoked in the absence of extracellular Ca2+ by octopamine, the arthropod homolog to norepinephrine. Genetic and pharmacology experiments demonstrate that this surprising peptidergic transmission requires cAMP-dependent protein kinase, with only a minor contribution of exchange protein activated by cAMP (epac). Octopamine-evoked neuropeptide release also requires endoplasmic reticulum Ca2+ mobilization by the ryanodine receptor and the inositol trisphosphate receptor. Hence, rather than relying exclusively on activity-dependent Ca2+ entry into the nerve terminal, a behaviorally important neuromodulator uses synergistic cAMP-dependent protein kinase and endoplasmic reticulum Ca2+ signaling to induce synaptic neuropeptide release.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals

Dinara Bulgari; Chaoming Zhou; Randall S. Hewes; David L. Deitcher; Edwin S. Levitan

Significance Neuropeptides, which affect mood and behavior, are synthesized in the soma and delivered to nerve terminals for storage and release. Yet, among identified neurons, there is great variation in the abundance of neuropeptides in terminals. Demonstrated transcriptional regulation of neuropeptide synthesis supports the view that presynaptic neuropeptide stores are proportional to synthesis-driven delivery of neuropeptide-containing vesicles to terminals. However, we show that nerve terminals with dramatically different neuropeptide stores are supported by identical vesicle delivery and differ instead in efficiency of vesicle capture. Vesicle capture in the terminal is under transcriptional control and influences vesicle distribution and replacement as well as neuropeptide accumulation for release. Thus, vesicle capture is a major determinant of nerve terminal function. Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.


Biology Open | 2014

Insulin signaling regulates neurite growth during metamorphic neuronal remodeling.

Tingting Gu; Tao Zhao; Randall S. Hewes

Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.


Genetics | 2014

Neuronal Remodeling During Metamorphosis Is Regulated by the alan shepard ( shep ) Gene in Drosophila melanogaster

Dahong Chen; Chunjing Qu; Sonia M. Bjorum; Kathleen M. Beckingham; Randall S. Hewes

Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons.


Trends in Endocrinology and Metabolism | 2008

The buzz on fly neuronal remodeling

Randall S. Hewes

Hormone-dependent rewiring of axons and dendrites is a conserved feature of nervous system development and plasticity. During metamorphosis in insects, steroid hormones (the ecdysteroids) and terpenoid hormones (the juvenile hormones) regulate extensive remodeling of the nervous system. These changes retool the nervous system for new behavioral and physiological functions that are required for the adult stage of the life cycle. In honey bees and other highly social insects, hormones also regulate behavioral changes and neuronal plasticity associated with transitions between social caste roles. This review focuses on recent work in fruit flies and honey bees that reveals hormonal and molecular mechanisms underlying metamorphic and caste-dependent neuronal remodeling, with specific emphasis on the role of Krüppel homolog 1.


PLOS Genetics | 2012

Cryptocephal, the Drosophila melanogaster ATF4, Is a Specific Coactivator for Ecdysone Receptor Isoform B2

Sebastien A. Gauthier; Eric VanHaaften; Lucy Cherbas; Peter Cherbas; Randall S. Hewes

The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (USP). In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s) contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4) is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC), the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH), an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators.

Collaboration


Dive into the Randall S. Hewes's collaboration.

Top Co-Authors

Avatar

Tingting Gu

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Zhao

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Dahong Chen

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Paul H. Taghert

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Arvonn Tully

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Chaoming Zhou

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge