Rania A.H. Ishak
Ain Shams University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rania A.H. Ishak.
Journal of Liposome Research | 2017
Sally Safwat; Rania M. Hathout; Rania A.H. Ishak; Nahed D. Mortada
Abstract Context: We noticed paucity in exploiting solutol-based lipid nanocapsules in statins formulations though they carry all favorable properties that are needed for cancer passive targeting such as their small particle size, stealth properties, ability to highly accommodate lipophilic drugs, good internalization and P-gp pump inhibition. Objective: The aim of this study was to design and optimize new simvastatin drug delivery systems; lipid nanocapsules intended for administration through the intravenous route as potential treatment for breast cancer. Methods: Optimized nanocapsules were prepared by the phase-inversion method according to a D-optimal mixture design, characterized and assessed for their cytotoxicity. Results: Three successful models for particle size, polydispersity index (PDI) and percentage of drug released after 48 h were generated. The prepared lipid nanocapsules acquired spherical and homogenous morphology, good stability and tolerance to sterilization. The obtained release profiles demonstrated desired sustained release pattern. Furthermore, testing selected formulations on human breast cancer adenocarcinoma cells showed augmented cytotoxicity of simvastatin reaching low IC50 values as 1.4 ± 0.02 μg/ml compared to the pure drug. Conclusion: The proposed lipid nanocapsules pose promising candidates as simvastatin carriers intended for the targeting of breast cancer.
International Journal of Biological Macromolecules | 2016
Rania A. Hashad; Rania A.H. Ishak; Sherif F. Fahmy; Samar Mansour; Ahmed S. Geneidi
At a novel pH value of the polymeric solution (6.2), variable chitosan (Cs) and sodium tripolyphosphate (TPP) concentrations and mass ratios were optimized to improve the process yield without undesirable particle flocculation. Prepared formulations were characterized in terms of particle size (PS), zeta potential (ZP) and percentage yield (% yield). Artificial neural networks (ANN) were built up and used to identify the parameters that control nanoparticle (NP) size and yield, in addition to being tested for their ability to predict these two experimental outputs. Using these networks, it was found that TPP concentration has the greatest effect on PS and% yield. The most optimum formulation was characterized by a notable process yield reaching 91.5%, a mean hydrodynamic PS 227 nm, ZP+24.13 mv and spherical compact morphology. Successful Cs-TPP interaction in NP formation was confirmed by both Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). This study demonstrated the ability of ANN to predict not only PS of the formed particles but also NP% yield. This may have a great impact on Cs-TPP NPs preparation and can be used to customize the required target formulations.
Carbohydrate Polymers | 2013
Rania A.H. Ishak; Gehanne A.S. Awad; Noha M. Zaki; Abd El-Hamid A. El-Shamy; Nahed D. Mortada
Engineering polymer surfaces reduces nanoparticles (NPs) aggregation and phagocytosis due to effective shielding, hindering recognition by the reticuloendothelial system (RES). The shielding of NPs is complex and affected by the type of groups used in terms of charge and hydrophilicity. This will, in turn, affect NPs biodistribution which will determine the length of activity of the drug. Polysaccharides are nowadays recognized for decreasing the uptake of particulate carriers by the mononuclear phagocytic system (MPS). Chitosan is considered as an attractive candidate due to its biocompatibility, biodegradability, non-toxicity and low cost. In this study clozapine (CZP)-loaded NPs were coated with chitosan, pluronic F-68, polyethylene glycol (PEG) 4000 and polysorbate 80. The factors affecting drug encapsulation efficiency, particle size, surface charge, surface hydrophilicity, pharmacokinetics and biodistribution were studied. The results proved that although a similarity in surface hydrophilicity, chitosan-stealth NPs showed different pharmacokinetic profile and biodistribution behavior compared to polysorbate-stealth NPs.
International Journal of Pharmaceutics | 2015
Rania A.H. Ishak; Rihab Osman
The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells.
Drug Development and Industrial Pharmacy | 2017
Hanaa A. Abdel Messih; Rania A.H. Ishak; Ahmed S. Geneidi; Samar Mansour
Abstract Objective: The aim of the present work is to exclusively optimize and model the effect of phospholipid type either egg phosphatidylcholine (EPC) or soybean phosphatidylcholine (SPC), together with other formulation variables, on the development of nano-ethosomal systems for transdermal delivery of a water-soluble antiemetic drug. Tropisetron HCl (TRO) is available as hard gelatin capsules and IV injections. The transdermal delivery of TRO is considered as a novel alternative route supposing to improve BAV as well as patient convenience. Methods: TRO-loaded ethanolic vesicular systems were prepared by hot technique. The effect of formulation variables were optimized through a response surface methodology using 3 × 22-level full factorial design. The concentrations of both PC (A) and ethanol (B) and PC type (C) were the factors, while entrapment efficiency (Y1), vesicle size (Y2), polydispersity index (Y3), and zeta potential (Y4) were the responses. The drug permeation across rat skin from selected formulae was studied. Particle morphology, drug–excipient interactions, and vesicle stability were also investigated. Results: The results proved the critical role of all formulation variables on ethosomal characteristics. The suggested models for all responses showed good predictability. Only the concentration of phospholipid, irrespective to PC type, had a significant effect on the transdermal flux (p < 0.01). The ethosomal vesicles were unilamellar with a nearly spherical shape. EPC-based ethosomes proved good stability. Conclusion: The study suggests the applicability of statistical modeling as a promising tool for prediction of ethosomal characteristics. The ethanolic vesicles were considered as novel potential nanocarriers for accentuated transdermal TRO delivery.
International Journal of Biological Macromolecules | 2016
Rania A. Hashad; Rania A.H. Ishak; Ahmed S. Geneidi; Samar Mansour
The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV).
Journal of Pharmacy and Pharmaceutical Sciences | 2015
Rania A.H. Ishak
Gastric retentive drug delivery provides a promising technology exhibiting an extended gastric residence and a drug release independent of patient related variables. It is usually useful in improving local gastric treatment as well as overcoming drug-related problems .i.e. drugs having narrow absorption window, short half-life or low intestinal solubility. Buoyancy is considered one of the most promising approaches for gastro-retention of dosage forms. Floating drug delivery systems have a bulk density lower than gastric fluids and thus remain buoyant in the stomach causing an increase in gastric residence time. The buoyancy of these systems is attained by the aid of substances responsible to generate the low density. Various agents with different mechanisms were adopted either gas-generating agents, air entrapping swellable polymers, inherent low density substances, porous excipients, hollow/porous particles inducing preparation techniques or sublimating agents. Therefore, this review gives an exclusive descriptive classification of the different categories of these buoyancy-generating agents while representing the related research works. An overview is also conducted to describe relevant techniques assessing the floating behavior of such dosage forms either in vitro or in vivo. Finally, a collection representing FDA-approved floating pharmaceutical products is adopted with emphasis on the buoyancy-generating agent type used in each product.
Journal of Pharmacy and Pharmacology | 2017
Sally Safwat; Rania A.H. Ishak; Rania M. Hathout; Nahed D. Mortada
Exploring the use of statins as anticancer agents and exploiting different drug delivery systems in targeting these molecules to cancerous sites. Literature review was performed to investigate the use of statins in cancer treatment in one hand, and the different pharmaceutical approaches to deliver and target these drugs to their site of action.
International Journal of Pharmaceutics | 2017
Rania A. Hashad; Rania A.H. Ishak; Ahmed S. Geneidi; Samar Mansour
The active tumor targeting ligands, hyaluronic acid (HA) and human serum albumin (HSA), are considered promising targeting moieties of drug carriers for cancer therapy. The chitosan nanoparticles loaded with methotrexate (MTX-CsNPs) were employed as the core for subsequent coating process. HA and HSA coating solutions were used at different concentrations. The effect of different HA Mw (1000, 360, 10kDa) was also investigated. The coated MTX-CsNPs was characterized proving the success of surface functionalization. The antitumor activity of the prepared MTX-CsNPs was evaluated on MCF-7 breast cancer cell lines. Results showed that both 360 and 10kDa HA allowed for successful HA adsorption, while its Mw and concentration determined negative charge density. HSA coating was accompanied by a slight increase in nanoparticles (NPs) size and a final positive surface charge. The in vitro cytotoxicity proved that HA and HSA coated MTX-CsNPs improved the antitumor activity compared to uncoated NPs and free drug.
Current Pharmaceutical Design | 2016
Rania A.H. Ishak; Rihab Osman; Gehanne A.S. Awad
BACKGROUND Dextran (DX) is a natural polysaccharide produced in the laboratory by fermentation of sucrose under the effect of the enzyme DX sucrase (1,6-α-D-glucan-α- glucosyltransferase). After harvesting and purification DX is subjected to cracking and separation to obtain the desired molecular weight. METHODS The hydroxyl groups present in DX offer many sites for derivatization allowing the production of functionalized glycoconjugates biocompatible compound. DX and its derivatives are getting increased attention for use in core decoration or as carriers in novel drug delivery systems. This includes, among others, ion-pairing, self-aggregate, protein and drug conjugates. DX carriers and camouflaged particles will be dealt with in this review to give emphasis on the great versatility of this natural biocompatible polysaccharide. CONCLUSION With the continuous development in the area of drug delivery, we believe that the unique properties of this versatile nanocarrier platform will elect it as one of the cornerstones of safe nanodelivery systems.