Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raoul-Marie Couture is active.

Publication


Featured researches published by Raoul-Marie Couture.


Environmental Science & Technology | 2013

Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.

Raoul-Marie Couture; Jérôme Rose; N. Kumar; Kristen Mitchell; Dirk Wallschläger; P. Van Cappellen

Sorption to iron (Fe) minerals determines the fate of the toxic metalloid arsenic (As) in many subsurface environments. Recently, thiolated As species have been shown to dominate aqueous As speciation under a range of environmentally relevant conditions, thus highlighting the need for a quantitative understanding of their sorption behavior. We conducted batch experiments to measure the time-dependent sorption of two S-substituted arsenate species, mono- and tetrathioarsenate, and compared it to the sorption of arsenite and arsenate, in suspensions containing 2-line ferrihydrite, goethite, mackinawite, or pyrite. All four As species strongly sorbed to ferrihydrite. For the other sorbents, binding of the thiolated As species was generally lower compared to arsenate and arsenite, with the exception of the near instantaneous and complete sorption of monothioarsenate to pyrite. Analysis of the X-ray absorption spectroscopy (XAS) spectra of sorbed complexes implied that monothioarsenate binds to Fe oxides as a monodentate, inner-sphere complex. In the presence of Fe sulfides, mono- and tetrathioarsenate were both unstable and partially reduced to arsenite. Adsorption of the thiolated As species to the Fe sulfide minerals also caused the substitution of surface sulfur (S) atoms by As and the formation of As-Fe bonds.


Journal of Hazardous Materials | 2011

Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments.

Raoul-Marie Couture; Philippe Van Cappellen

Recent evidence suggests that the oxidation of arsenite by zero-valent sulfur (S(0)) may produce stable aqueous arsenate species under highly reducing conditions. The speciation of arsenic (As) in reducing soils, sediments and aquifers may therefore be far more complex than previously thought. We illustrate this by presenting updated E(h)-pH diagrams of As speciation in sulfidic waters that include the most recently reported formation constants for sulfide complexes of As(III) and As(V). The results show that the stability fields of As(III) and As(V) (oxy)thioanions cover a large pH range, from pH 5 to 10. In particular, As(V)-S(-II) complexes significantly enhance the predicted solubility of As under reducing conditions. Equilibrium calculations further show that, under conditions representative of sulfidic pore waters and in the presence of solid-phase elemental sulfur, the S(0)((aq))/HS(-) couple yields a redox potential (E(h))∼ 0.1 V higher than the SO(4)(2-)/HS(-) couple. S(0) may thus help stabilize aqueous As(V) not only by providing an electron acceptor for As(III) but also by contributing to a more oxidizing redox state.


Environmental Pollution | 2013

The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils

Christopher T. Parsons; Raoul-Marie Couture; Enoma O. Omoregie; Fabrizio Bardelli; Jean-Marc Greneche; Gabriela Roman-Ross; Laurent Charlet

Arsenic contamination of floodplain soils is extensive and additional fresh arsenic inputs to the pedosphere from human activities are ongoing. We investigate the cumulative effects of repetitive soil redox cycles, which occur naturally during flooding and draining, on a calcareous fluvisol, the native microbial community and arsenic mobility following a simulated contamination event. We show through bioreactor experiments, spectroscopic techniques and modelling that repetitive redox cycling can decrease arsenic mobility during reducing conditions by up to 45%. Phylogenetic and functional analyses of the microbial community indicate that iron cycling is a key driver of observed changes to solution chemistry. We discuss probable mechanisms responsible for the arsenic immobilisation observed in-situ. The proposed mechanisms include, decreased heterotrophic iron reduction due to the depletion of labile particulate organic matter (POM), increases to the proportion of co-precipitated vs. aqueous or sorbed arsenic with α-FeOOH/Fe(OH)3 and potential precipitation of amorphous ferric arsenate.


Environmental Science & Technology | 2010

Non-steady state modeling of arsenic diagenesis in lake sediments.

Raoul-Marie Couture; Babak Shafei; Philippe Van Cappellen; André Tessier; Charles Gobeil

A one-dimensional reactive transport model describing the coupled biogeochemical cycling of As, C, O, Fe, and S was used to interpret an extensive geochemical sediment (As, Fe, S, (210)Pb, (137)Cs, C(org)) and pore water (As, Fe, SO(4)(2-), SigmaS(-II) and pH) data set collected in the perennially oxygenated basin of an oligotrophic lake. Historical variations in atmospheric deposition of As and SO(4)(2-) were explicitly included as upper boundary conditions in the model calculations. The results show that the depth profile of sediment-bound As reflects both the past changes in As deposition and the diagenetic redistribution of As among the Fe(III) oxyhydroxide and Fe(II) sulfide pools. The model-predicted benthic release of dissolved As to the water column peaks 26 years after the maximum anthropogenic As input to the lake, which occurred around 1950. Two major environmental forcings of the benthic recycling of As are the organic matter degradation in the sediment and the atmospheric sulfate deposition to the lake. More oxidizing conditions associated with lower organic matter degradation rates yield a greater abundance of Fe(III) oxyhydroxides in the topmost sediment, which act as a barrier to pore water As. Variations in sulfate availability have more complex effects on benthic As remobilization, since sulfide produced by sulfate reduction may enhance both the uptake of dissolved As through the precipitation of Fe(II) sulfides and the release of dissolved As through the reductive dissolution of Fe(III) oxyhydroxides.


Environmental Chemistry | 2013

Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment

Raoul-Marie Couture; Dirk Wallschläger; Jérôme Rose; Philippe Van Cappellen

Environmental context The use of water contaminated with arsenic for drinking and irrigation is linked to water and food borne diseases throughout the world. Although reducing conditions in soils and sediments are generally viewed as enhancing arsenic mobility in subsurface environments, we show they can actually promote As sequestration in the presence of reduced sulfur species and labile organic matter. We propose that sulfurisation of organic matter and subsequent binding of As to thiol groups may offer an innovative pathway for As remediation. Abstract Flow-through reactors (FTRs) were used to assess the mobility of arsenic under sulfate reducing conditions in natural, undisturbed lake sediments. The sediment slices in the FTRs were supplied continuously with inflow solutions containing sulfate and soluble AsIII or AsV and, after 3 weeks, also lactate. The experiment ran for a total of 8 weeks. The dissolved iron concentration, pH, redox potential (Eh), as well as aqueous As and sulfur speciation were monitored in the outflow solutions. In FTRs containing surface sediment enriched in labile organic matter (OM), microbial sulfate reduction led to an accumulation of organically bound S, as evidenced by X-ray absorption spectroscopy. For these FTRs, the inflowing dissolved As concentration of 20μM was lowered by two orders of magnitude, producing outflow concentrations of 0.2μM monothioarsenate and 0.1μM arsenite. In FTRs containing sediment collected at greater depth, sulfide and zero-valent S precipitated as pyrite and elemental S, while steady-state outflow arsenite concentrations remained near 5μM. The observations thus suggest that As sequestration is enhanced when sediment OM buffers the free sulfide and zero-valent S concentrations. An updated conceptual model for the fate of As in the anoxic As–C–S–Fe system is presented based on the results of this study.


Environmental Science & Technology | 2015

On−Off Mobilization of Contaminants in Soils during Redox Oscillations

Raoul-Marie Couture; Laurent Charlet; Ekaterina Markelova; Benoı̂t Madé; Christopher T. Parsons

Near-surface biogeochemical systems can oscillate between oxic and anoxic conditions. Under such periodic changes many redox-sensitive inorganic contaminants undergo speciation, mobility and toxicity changes. We investigated the changes to chromium (Cr), arsenic (As), selenium (Se), antimony (Sb) and uranium (U) mobility during a series of laboratory experiments where argillaceous substrates were subjected to successive cycles of oxidizing and reducing conditions. The EH oscillated between -320 and +470 mV, induced via both abiotic and microbial forcings. Chemically induced cycles of oxidation and reduction were achieved via a combination of gas (N2:CO2 vs compressed air) and carbon (ethanol) addition, to stimulate the metabolism of a natively present microbial community. The contaminants were added either alone or as contaminant mixtures. Results show clear on-off switch mobility behavior for both major elements such as carbon (C), iron (Fe) and manganese (Mn) and for contaminants. Mn, Fe, and As were mobilized under anoxic conditions, whereas Sb, Se, and U were mobilized under oxic conditions. While As, Sb, and U were reversibly sorbed, Se and Cr were irreversibly sequestered via reductive precipitation. When present in aqueous solutions at high concentrations, Cr(VI) prevented the reduction of Mn and Fe, and inhibited the mobilization of elements with lower EH(o). To improve remediation strategies for multiple contaminants in redox-dynamic environments, we propose a mixed kinetic-equilibrium biogeochemical model that can be forced by oscillating boundary conditions and that uses literature rates and constants to capture the key processes responsible for the mobilization of contaminants in soils.


Environmental Science & Technology | 2016

Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier

Naresh Kumar; Raoul-Marie Couture; Romain Millot; Fabienne Battaglia-Brunet; Jérôme Rose

We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.


Journal of Geophysical Research | 2015

Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs

Raoul-Marie Couture; Heleen A. de Wit; Koji Tominaga; Petri Kiuru; Igor Markelov

Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process-based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a small boreal humic lake. The model was parametrized against year-round time series of water temperature and DO from a lake buoy. Observed trends in air temperature (+0.045°C yr−1) and DOC concentration (0.11 mg C L−1 yr−1, +1% annually) over the past 40 years were used as model forcings. A backcast of ice freezing and breakup dates revealed that ice breakup occurred on average 8 days earlier in 2014 than in 1974. The earlier ice breakup enhanced water column ventilation resulting in higher DO in the spring. Warmer water in late summer led to longer anoxic periods, as microbial DOC turnover increased. A long-term increase in DOC concentrations caused a decline in lake DO, leading to 15% more hypoxic days (<3 mg L−1) and 10% more anoxic days (<15 µg L−1) in 2014 than in 1974. We conclude that climate warming and increasing DOC loads are antagonistic with respect to their effect on DO availability. The model suggests that DOC is a stronger driver of DO consumption than temperature. The browning of lakes may thus cause reductions in the oxythermal habitat of fish and aquatic biota in boreal lakes.


Environmental Microbiology | 2012

Linking selenium biogeochemistry to the sulfur‐dependent biological detoxification of arsenic

Raoul-Marie Couture; Agnieszka Sekowska; Gang Fang; Antoine Danchin

Geochemistry often reveals unexpected (anti)correlations. Arsenic (As) and selenium (Se) are cases in point. We explore the hypothesis that bacteria living in an As-replete environment recruited a biological process involving Se and sulfur to fulfil their need for As detoxification. In analogy with the formation of arsenolipids and arsenosugars, which are common non-toxic As metabolites derived from microbial and plant metabolism, we attempt to explain the prevalence of novel sulfur-containing As derivatives, in particular monothioarsenate, in the aqueous environment. Thiolated-As species have been overlooked so far mainly because of the difficulty of their identification. Based on comparative genomics, we propose a scenario where SelD and SelU proteins, commonly used to make selenophosphate and modify transfer RNA, have been recruited to make monothioarsenate, a relatively innocuous arsenical. This hypothesis is discussed in terms of the relative geochemical distribution of Se and As.


Environmental Modelling and Software | 2016

The INtegrated CAtchment model of phosphorus dynamics (INCA-P)

Leah Jackson-Blake; Andrew J. Wade; Martyn N. Futter; D. Butterfield; Raoul-Marie Couture; B. A. Cox; J. Crossman; Petri Ekholm; Sarah J. Halliday; Li Jin; Deborah Lawrence; Ahti Lepistö; Yan Lin; Katri Rankinen; Paul Whitehead

INCA-P is a dynamic, catchment-scale phosphorus model which has been widely applied during the last decade. Since its original release in 2002, the model structure and equations have been significantly altered during several development phases. Here, we provide the first full model description since 2002 and then test the latest version of the model (v1.4.4) in a small rural catchment in northeast Scotland. The particulate phosphorus simulation was much improved compared to previous model versions, whilst the latest sorption equations allowed us to explore the potential time lags between reductions in terrestrial inputs and improvements in surface water quality, an issue of key policy relevance. The model is particularly suitable for use as a research tool, but should only be used to inform policy and land management in data-rich areas, where parameters and processes can be well-constrained. More long-term data is needed to parameterise dynamic models and test their predictions. We describe the latest version of INCA-P, a dynamic catchment phosphorus model.This is the first full description of the model structure and equations since 2002.A test application demonstrates improved model performance.New sorption equations allow the impacts of legacy soil P to be simulated over time.Model applicability and limitations are discussed.

Collaboration


Dive into the Raoul-Marie Couture's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Jannicke Moe

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heleen A. de Wit

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard F. Wright

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Sigrid Haande

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Yan Lin

Norwegian Institute for Water Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge