Raphael Flores
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raphael Flores.
Plant Journal | 2013
Caroline Pont; Florent Murat; Sébastien Guizard; Raphael Flores; Séverine Foucrier; Yannick Bidet; Umar Masood Quraishi; Michael Alaux; Jaroslav Doležel; Tzion Fahima; Hikmet Budak; Beat Keller; Silvio Salvi; Marco Maccaferri; Delphine Steinbach; Catherine Feuillet; Hadi Quesneville; Jérôme Salse
Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra-dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat, can be considered as a guide for accelerated dissection of major agronomical traits in wheat.
Genome Biology and Evolution | 2014
Florent Murat; Rongzhi Zhang; Sébastien Guizard; Raphael Flores; Alix Armero; Caroline Pont; Delphine Steinbach; Hadi Quesneville; Richard Cooke; Jérôme Salse
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named “PlantSyntenyViewer,” available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data.
Database | 2013
Delphine Steinbach; Michael Alaux; Joelle Amselem; Nathalie Choisne; Sophie Durand; Raphael Flores; Aminah-Olivia Keliet; Erik Kimmel; Nicolas Lapalu; Isabelle Luyten; Célia Michotey; Nacer Mohellibi; Cyril Pommier; Sébastien Reboux; Dorothée Valdenaire; Daphné Verdelet; Hadi Quesneville
Data integration is a key challenge for modern bioinformatics. It aims to provide biologists with tools to explore relevant data produced by different studies. Large-scale international projects can generate lots of heterogeneous and unrelated data. The challenge is to integrate this information with other publicly available data. Nucleotide sequencing throughput has been improved with new technologies; this increases the need for powerful information systems able to store, manage and explore data. GnpIS is a multispecies integrative information system dedicated to plant and fungi pests. It bridges genetic and genomic data, allowing researchers access to both genetic information (e.g. genetic maps, quantitative trait loci, markers, single nucleotide polymorphisms, germplasms and genotypes) and genomic data (e.g. genomic sequences, physical maps, genome annotation and expression data) for species of agronomical interest. GnpIS is used by both large international projects and plant science departments at the French National Institute for Agricultural Research. Here, we illustrate its use. Database URL: http://urgi.versailles.inra.fr/gnpis
Genome Biology and Evolution | 2015
Florent Murat; Rongzhi Zhang; Sébastien Guizard; Haris Gavranović; Raphael Flores; Delphine Steinbach; Hadi Quesneville; Eric Tannier; Jérôme Salse
We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids.
Proteomics | 2013
Olivier Langella; Benoît Valot; Daniel Jacob; Thierry Balliau; Raphael Flores; Christine Hoogland; Johann Joets; Michel Zivy
High throughput MS‐based proteomic experiments generate large volumes of complex data and necessitate bioinformatics tools to facilitate their handling. Needs include means to archive data, to disseminate them to the scientific communities, and to organize and annotate them to facilitate their interpretation. We present here an evolution of PROTICdb, a database software that now handles MS data, including quantification. PROTICdb has been developed to be as independent as possible from tools used to produce the data. Biological samples and proteomics data are described using ontology terms. A Taverna workflow is embedded, thus permitting to automatically retrieve information related to identified proteins by querying external databases. Stored data can be displayed graphically and a “Query Builder” allows users to make sophisticated queries without knowledge on the underlying database structure. All resources can be accessed programmatically using a Java client API or RESTful web services, allowing the integration of PROTICdb in any portal. An example of application is presented, where proteins extracted from a maize leaf sample by four different methods were compared using a label‐free shotgun method. Data are available at http://moulon.inra.fr/protic/public. PROTICdb thus provides means for data storage, enrichment, and dissemination of proteomics data.
The Plant Genome | 2016
Manuel Spannagl; Michael Alaux; Matthias Lange; Daniel M. Bolser; Kai Christian Bader; Thomas Letellier; Erik Kimmel; Raphael Flores; Cyril Pommier; Arnaud Kerhornou; Brandon Walts; Thomas Nussbaumer; Christoph Grabmüller; Jinbo Chen; Christian Colmsee; Sebastian Beier; Martin Mascher; Thomas Schmutzer; Daniel Arend; Anil Thanki; Ricardo H. Ramirez-Gonzalez; Martin Ayling; Sarah Ayling; Mario Caccamo; Klaus F. X. Mayer; Uwe Scholz; Delphine Steinbach; Hadi Quesneville; Paul J. Kersey
The genome sequences of many important Triticeae species, including bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT (http://www.transplantdb.eu) is an EU‐funded project aimed at constructing hardware, software, and data infrastructure for genome‐scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.
Genome Biology | 2018
Michael Alaux; Jane Rogers; Thomas Letellier; Raphael Flores; Françoise Alfama; Cyril Pommier; Nacer Mohellibi; Sophie Durand; Erik Kimmel; Célia Michotey; Claire Guerche; Mikaël Loaec; Mathilde Lainé; Delphine Steinbach; Frédéric Choulet; Hélène Rimbert; Philippe Leroy; Nicolas Guilhot; Jérôme Salse; Catherine Feuillet; Etienne Paux; Kellye Eversole; Anne-Françoise Adam-Blondon; Hadi Quesneville
The Wheat@URGI portal has been developed to provide the international community of researchers and breeders with access to the bread wheat reference genome sequence produced by the International Wheat Genome Sequencing Consortium. Genome browsers, BLAST, and InterMine tools have been established for in-depth exploration of the genome sequence together with additional linked datasets including physical maps, sequence variations, gene expression, and genetic and phenomic data from other international collaborative projects already stored in the GnpIS information system. The portal provides enhanced search and browser features that will facilitate the deployment of the latest genomics resources in wheat improvement.
Frontiers in Plant Science | 2017
Umar Masood Quraishi; Caroline Pont; Qurat-ul Ain; Raphael Flores; Laura Burlot; Michael Alaux; Hadi Quesneville; Jérôme Salse
The high resolution integration of bread wheat genetic and genomic resources accumulated during the last decades offers the opportunity to unveil candidate genes driving major agronomical traits to an unprecedented scale. We combined 27 public quantitative genetic studies and four genetic maps to deliver an exhaustive consensus map consisting of 140,315 molecular markers hosting 221, 73, and 82 Quantitative Trait Loci (QTL) for respectively yield, baking quality, and grain protein content (GPC) related traits. Projection of the consensus genetic map and associated QTLs onto the wheat syntenome made of 99,386 genes ordered on the 21 chromosomes delivered a complete and non-redundant repertoire of 18, 8, 6 metaQTLs for respectively yield, baking quality and GPC, altogether associated to 15,772 genes (delivering 28,630 SNP-based makers) including 37 major candidates. Overall, this study illustrates a translational research approach in transferring information gained from grass relatives to dissect the genomic regions hosting major loci governing key agronomical traits in bread wheat, their flanking markers and associated candidate genes to be now considered as a key resource for breeding programs.
Archive | 2015
Florent Murat; Rongzhi Zhang; Sébastien Guizard; Haris Gavranovi; Raphael Flores; Delphine Steinbach; Hadi Quesneville; Eric Tannier; Jérôme Salse
Plant Genomics Seminar 2012 | 2012
Célia Michotey; Frédéric Sapet; Pierre Dubreuil; Jacques Le Gouis; Mathilde Causse; Cyril Pommier; Sophie Durand; Nacer Mohellibi; Raphael Flores; Catherine Delaitre; Stéphane D. Nicolas; Alain Charcosset; Yannick De Oliveira; Patrice This; Roberto Bacilieri; Alexis Dereeper; Philippe Lashermes; Hadi Quesneville; Delphine Steinbach