Raquel Rabionet
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raquel Rabionet.
The Lancet | 1998
Xavier Estivill; Paolo Fortina; Saul Surrey; Raquel Rabionet; Salvatore Melchionda; Leonardo D'Agruma; Elaine S. Mansfield; Eric Rappaport; Nancy Govea; Montse Milà; Leopoldo Zelante; Paolo Gasparini
BACKGROUND Hearing impairment affects one infant in 1000 and 4% of people aged younger than 45 years. Congenital deafness is inherited or apparently sporadic. We have shown previously that DFNB1 on chromosome 13 is a major locus for recessive deafness in about 80% of Mediterranean families and that the connexin-26 gene gap junction protein beta2 (GJB2) is mutated in DFNB1 families. We investigated mutations in the GJB2 gene in familial and sporadic cases of deafness. METHODS We obtained DNA samples from 82 families from Italy and Spain with recessive non-syndromic deafness and from 54 unrelated participants with apparently sporadic congenital deafness. We analysed the coding region of the GJB2 gene for mutations. We also tested 280 unrelated people from the general populations of Italy and Spain for the frameshift mutation 35delG. FINDINGS 49% of participants with recessive deafness and 37% of sporadic cases had mutations in the GJB2 gene. The 35delG mutation accounted for 85% of GJB2 mutations, six other mutations accounted for 6% of alleles, and no changes in the coding region of GJB2 were detected in 9% of DFNB1 alleles. The carrier frequency of mutation 35delG among people from the general population was one in 31 (95% CI one in 19 to one in 87). INTERPRETATION Mutations in the GJB2 gene are a major cause of inherited and apparently sporadic congenital deafness. Mutation 35delG is the most common mutation for sensorineural deafness. Identification of 35delG and other mutations in the GJB2 gene should facilitate diagnosis and counselling for the most common genetic form of deafness.
PLOS ONE | 2009
Mari Nelis; Tonu Esko; Reedik Mägi; Fritz Zimprich; Alexander Zimprich; Draga Toncheva; Sena Karachanak; T. Piskackova; I. Balascak; Leena Peltonen; Eveliina Jakkula; Karola Rehnström; Mark Lathrop; Simon Heath; Pilar Galan; Stefan Schreiber; Thomas Meitinger; Arne Pfeufer; H-Erich Wichmann; Béla Melegh; Noémi Polgár; Daniela Toniolo; Paolo Gasparini; Pio D'Adamo; Janis Klovins; Liene Nikitina-Zake; Vaidutis Kučinskas; Jūratė Kasnauskienė; Jan Lubinski; Tadeusz Dębniak
Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (λ) (ranging from 1.00 to 4.21), fixation index (Fst) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).
Nature Genetics | 1999
Anna Grifa; Carsten A. Wagner; Lucrezia D'Ambrosio; Salvatore Melchionda; Francesco Bernardi; Nuria Lopez-Bigas; Raquel Rabionet; Mariona Arbones; Matteo Della Monica; Xavier Estivill; Leopoldo Zelante; Florian Lang; Paolo Gasparini
factors1. Mutations in the connexin26 gene (GJB2), located on 13q12, are responsible for non-syndromic recessive and dominant forms of deafness2–4. Connexin-31 and connexin-32 have also been implicated in deafness5,6. The identification of deaf families linked to 13q12 but negative for mutations in GJB2 (ref. 7) suggested the presence of other deafness genes in this region. Recently, the mouse connexin-30 gene (Gjb6), which is expressed in cochlea, has been mapped to a region with syntenic homology to human chromosome 13q12 (refs 8,9). To verify if human GJB6 is involved in deafness, we cloned a 1,799-bp cDNA fragment containing an ORF of 261 amino acids (EMBL HSA005585). CX30 protein has a structure similar to that of other connexins10 and shares 93% homology with mouse Cx30 and 76% identity with human CX26. GJB6 is not interrupted by introns and maps to chromosome 13q12, approximately 800 kb centromeric to GJB2. SSCP mutational analysis in 198 deaf patients, including 38 families linked to 13q12, revealed a threonine-to-methionine change at position 5 (T5M) in an Italian family affected by bilateral middle/ high-frequency hearing loss (Fig. 1a–c). Audiograms in T5M family members showed a 20–50-dB decrease at frequencies of 2,000–8,000 Hz (I-2), a progressive impaired threshold above 500 Hz (II-1) and a profound sensorineural deafness (II-2). This variability of hearing impairment can be explained by a different expressivity of the disease, which is almost the rule for dominant deafness. Northern blots, RT-PCR and in situ hybridization on mouse embryos revealed Gjb6 expression in trachea, thyroid, thymus, brain and cochlea, confirming reported expression patterns (refs 8,9,11). The threonine residue at position 5 is evolutionarily conserved and also present in human connexin 26 (Fig. 1d). The T5M substitution abolishes a hydrophilic residue possibly involved in interor Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus correspondence
Human Molecular Genetics | 2011
Elena Miñones-Moyano; Sílvia Porta; Geòrgia Escaramís; Raquel Rabionet; Susana Iraola; Birgit Kagerbauer; Yolanda Espinosa-Parrilla; Isidre Ferrer; Xavier Estivill; Eulàlia Martí
MicroRNAs (miRNAs) are post-transcriptional gene expression regulators, playing key roles in neuronal development, plasticity and disease. Parkinsons disease (PD) is the second most common neurodegenerative disorder, characterized by the presence of protein inclusions or Lewy bodies and a progressive loss of dopaminergic neurons in the midbrain. Here, we have evaluated miRNA expression deregulation in PD brain samples. MiRNA expression profiling revealed decreased expression of miR-34b and miR-34c in brain areas with variable neuropathological affectation at clinical (motor) stages (Braak stages 4 and 5) of the disease, including the amygdala, frontal cortex, substantia nigra and cerebellum. Furthermore, misregulation of miR-34b/c was detected in pre-motor stages (stages 1-3) of the disease, and thus in cases that did not receive any PD-related treatment during life. Depletion of miR-34b or miR-34c in differentiated SH-SY5Y dopaminergic neuronal cells resulted in a moderate reduction in cell viability that was accompanied by altered mitochondrial function and dynamics, oxidative stress and reduction in total cellular adenosin triphosphate content. MiR-34b/c downregulation was coupled to a decrease in the expression of DJ1 and Parkin, two proteins associated to familial forms of PD that also have a role in idiopathic cases. Accordingly, DJ1 and Parkin expression was reduced in PD brain samples displaying strong miR-34b/c downregulation. We propose that early deregulation of miR-34b/c in PD triggers downstream transcriptome alterations underlying mitochondrial dysfunction and oxidative stress, which ultimately compromise cell viability. A better understanding of the cellular pathways controlling and/or controlled by miR-34b/c should allow identification of targets for development of therapeutic approaches.
Human Genetics | 2000
Raquel Rabionet; Leopoldo Zelante; Nuria Lopez-Bigas; Leonardo D'Agruma; Salvatore Melchionda; Gabriella Restagno; Maria L. Arbonés; Paolo Gasparini; Xavier Estivill
Abstract. Mutations in the GJB2 gene have been identified in many patients with childhood deafness, 35delG being the most common mutation in Caucasoid populations. We have analyzed a total of 576 families/unrelated patients with recessive or sporadic deafness from Italy and Spain, 193 of them being referred as autosomal recessive, and the other 383 as apparently sporadic cases (singletons). Of the 1152 unrelated GJB2 chromosomes analyzed from these patients, 37% had GJB2 mutations. Twenty-three different mutations were detected (1 in-frame deletion, 4 nonsense, 5 frameshift, and 13 missense mutations). Mutation 35delG was the most common, accounting for 82% of all GJB2 deafness alleles. The relative frequency of 35delG in Italy and Spain was different, representing 88% of the alleles in Italian patients and only 55% in the Spanish cases. Eight non-35delG mutations were detected more than once (V37I, E47X, 167delT, L90P, 312del14, 334delAA, R143W, and R184P), with relative frequencies ranging between 0.5 and 1.6% of the GJB2 deafness alleles. The information based on conservation of amino acid residues, coexistence with a second GJB2 mutation or absence of the mutation in non-deaf control subjects, suggests that most of these missense changes should be responsible for the deafness phenotype.
Human Mutation | 2000
Raquel Rabionet; Paolo Gasparini; Xavier Estivill
Deafness is a complex disorder that involves a high number of genes and environmental factors. There has been enormous progress in non‐syndromic deafness research during the last five years, with the identification of over 50 loci and 15 genes. Among these, three genes, GJB2, GJB3, and GJB6, encode for connexin proteins (Connexin26, Connexin31, and Connexin30, respectively). Another connexin (Connexin32, encoded by GJB1) is involved in X‐linked peripheral neuropathy and hearing impairment. Mutations in these genes cause autosomal recessive (GJB2 and GJB3), autosomal dominant (GJB2, GJB3, and GJB6) or X‐linked (GJB1) hearing impairment, both syndromic (GJB2, keratoderma; GJB3 erythrokeratodermia variabilis; and GJB1, peripheral neuropathy), and non‐syndromic (GJB2, GJB3, and GJB6). Among these genes, mutations in GJB2 account for about 50% of all congenital cases of hearing impairment. Three mutations in GJB2 (35delG, 167delT, and 235delC) are particularly common in specific populations (Caucasoid, Jewish Ashkenazi, and Oriental, respectively), leading to carrier frequencies between one in 30 and one in 75. Over 50 mutations have been identified in the GJB2 gene, of which some missense changes (M34T, W44C, G59A, D66H, and R75W) have a negative dominant action in hearing impairment, with partial to full penetrance. Functional studies for some missense mutations in connexins 26, 30, and 32 have indicated abnormal gap junction conductivity. Expression patterns in mouse and rat cochlea indicate that Connexin26 and Connexin30 are expressed in the supportive cells of the cochlea, suggesting a potential role in endolymph potassium recycling. The high prevalence of mutations in GJB2 in some populations provides the tools for molecular diagnosis, carrier detection, and prenatal diagnosis of congenital hearing impairment. Hum Mutat 16:190–202, 2000.
American Journal of Human Genetics | 2001
Salvatore Melchionda; Nadav Ahituv; Luigi Bisceglia; Tama Sobe; Fabian Glaser; Raquel Rabionet; Maria L. Arbonés; Angelo Notarangelo; Enzo Di Iorio; Massimo Carella; Leopoldo Zelante; Xavier Estivill; Karen B. Avraham; Paolo Gasparini
Mutations in the unconventional myosin VI gene, Myo6, are associated with deafness and vestibular dysfunction in the Snells waltzer (sv) mouse. The corresponding human gene, MYO6, is located on chromosome 6q13. We describe the mapping of a new deafness locus, DFNA22, on chromosome 6q13 in a family affected by a nonsyndromic dominant form of deafness (NSAD), and the subsequent identification of a missense mutation in the MYO6 gene in all members of the family with hearing loss.
Molecular and Cellular Biology | 1998
Frédérique Verdier; Raquel Rabionet; Fabrice Gouilleux; Christian Beisenherz-Huss; Paule Varlet; Odile Muller; Patrick Mayeux; Catherine Lacombe; Sylvie Gisselbrecht; Stany Chrétien
ABSTRACT Two distinct genes encode the closely related signal transducer and activator of transcription proteins STAT5A and STAT5B. The molecular mechanisms of gene regulation by STAT5 and, particularly, the requirement for both STAT5 isoforms are still undetermined. Only a few STAT5 target genes, among them the CIS (cytokine-inducible SH2-containing protein) gene, have been identified. We cloned the human CIS gene and studied the human CIS gene promoter. This promoter contains four STAT binding elements organized in two pairs. By electrophoretic mobility shift assay studies using nuclear extracts of UT7 cells stimulated with erythropoietin, we showed that these four sequences bound to STAT5-containing complexes that exhibited different patterns and affinities: the three upstream STAT binding sequences bound to two distinct STAT5-containing complexes (C0 and C1) and the downstream STAT box bound only to the slower-migrating C1 band. Using nuclear extracts from COS-7 cells transfected with expression vectors for the prolactin receptor, STAT5A, and/or STAT5B, we showed that the C1 complex was composed of a STAT5 tetramer and was dependent on the presence of STAT5A. STAT5B lacked this property and bound with a stronger affinity than did STAT5A to the four STAT sequences as a homodimer (C0 complex). This distinct biochemical difference between STAT5A and STAT5B was confirmed with purified activated STAT5 recombinant proteins. Moreover, we showed that the presence on the same side of the DNA helix of a second STAT sequence increased STAT5 binding and that only half of the palindromic STAT binding sequence was sufficient for the formation of a STAT5 tetramer. Again, STAT5A was essential for this cooperative tetrameric association. This property distinguishes STAT5A from STAT5B and could be essential to explain the transcriptional regulation diversity of STAT5.
Molecular Psychiatry | 2014
Vesna Boraska; Jab Floyd; Lorraine Southam; N W Rayner; Ioanna Tachmazidou; Stephanie Zerwas; Osp Davis; Sietske G. Helder; R Burghardt; K Egberts; Stefan Ehrlich; Susann Scherag; Nicolas Ramoz; Judith Hendriks; Eric Strengman; A. van Elburg; A Bruson; Maurizio Clementi; M Forzan; E Tenconi; Elisa Docampo; Geòrgia Escaramís; A Rajewski; A Slopien; Leila Karhunen; Ingrid Meulenbelt; Mario Maj; Artemis Tsitsika; L Slachtova; Zeynep Yilmaz
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge–purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10−7) in SOX2OT and rs17030795 (P=5.84 × 10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10−6) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10−6) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10−6), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
Annals of Neurology | 2010
Alessandro Biffi; Akshata Sonni; Christopher D. Anderson; Brett Kissela; Jeremiasz M. Jagiella; Helena Schmidt; Jordi Jimenez-Conde; Björn M. Hansen; Israel Fernandez-Cadenas; Lynelle Cortellini; Alison Ayres; Kristin Schwab; Karol Juchniewicz; Andrzej Urbanik; Natalia S. Rost; Anand Viswanathan; Thomas Seifert-Held; Eva Stoegerer; Marta Tomás; Raquel Rabionet; Xavier Estivill; Devin L. Brown; Scott Silliman; Magdy Selim; Bradford B. Worrall; James F. Meschia; Joan Montaner; Arne Lindgren; Jaume Roquer; Reinhold Schmidt
Prior studies investigating the association between APOE alleles ε2/ε4 and risk of intracerebral hemorrhage (ICH) have been inconsistent and limited to small sample sizes, and did not account for confounding by population stratification or determine which genetic risk model was best applied.