Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravi Padia is active.

Publication


Featured researches published by Ravi Padia.


Immunity | 2014

Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis

Nagendra Singh; Ashish Gurav; Sathish Sivaprakasam; Evan Brady; Ravi Padia; Huidong Shi; Muthusamy Thangaraju; Puttur D. Prasad; Santhakumar Manicassamy; David H. Munn; Jeffrey R. Lee; Stefan Offermanns; Vadivel Ganapathy

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Immunity | 2014

ArticleActivation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis

Nagendra Singh; Ashish Gurav; Sathish Sivaprakasam; Evan Brady; Ravi Padia; Huidong Shi; Muthusamy Thangaraju; Puttur D. Prasad; Santhakumar Manicassamy; David H. Munn; Jeffrey R. Lee; Stefan Offermanns; Vadivel Ganapathy

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Cancer Research | 2009

Extracellular Signal–Regulated Kinase Signaling Pathway Regulates Breast Cancer Cell Migration by Maintaining slug Expression

Haoming Chen; Genfeng Zhu; Yong Li; Ravi Padia; Zheng Dong; Zhixing K. Pan; Kebin Liu; Shuang Huang

Cell migration is a critical step in cancer cell invasion. Recent studies have implicated the importance of the extracellular signal-regulated kinase (ERK) signaling pathway in cancer cell migration. However, the mechanism associated with ERK-regulated cell migration is poorly understood. Using a panel of breast cancer cell lines, we detected an excellent correlation between ERK activity and cell migration. Interestingly, we noticed that a 48-hour treatment with U0126 [specific mitogen-activated protein/ERK kinase (MEK)-1/2 inhibitor] was needed to significantly inhibit breast cancer cell migration, whereas this inhibitor blocked ERK activity within 1 hour. This observation suggests that ERK-dependent gene expression, rather than direct ERK signaling, is essential for cell migration. With further study, we found that ERK activity promoted the expression of the activator protein-1 (AP1) components Fra-1 and c-Jun, both of which were necessary for cell migration. Combination of U0126 treatment and Fra-1/c-Jun knockdown did not yield further reduction in cell migration than either alone, indicating that ERKs and Fra-1/c-Jun act by the same mechanism to facilitate cell migration. In an attempt to investigate the role of Fra-1/c-Jun in cell migration, we found that the ERK-Fra-1/c-Jun axis regulated slug expression in an AP1-dependent manner. Moreover, the occurrence of U0126-induced migratory inhibition coincided with slug reduction, and silencing slug expression abrogated breast cancer cell migration. These results suggest an association between ERK-regulated cell migration and slug expression. Indeed, cell migration was not significantly inhibited by U0126 treatment or Fra-1/c-Jun silencing in cells expressing slug transgene. Our study suggests that the ERK pathway regulates breast cancer cell migration by maintaining slug expression.


Nature Communications | 2015

DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

Rajneesh Pathania; Selvakumar Elangovan; Ravi Padia; Pengyi Yang; Senthilkumar Cinghu; Rajalakshmi Veeranan-Karmegam; Pachiappan Arjunan; Jaya P. Gnana-Prakasam; Fulzele Sadanand; Lirong Pei; Chang Sheng Chang; Jeong Hyeon Choi; Huidong Shi; Santhakumar Manicassamy; Puttur D. Prasad; Suash Sharma; Vadivel Ganapathy; Raja Jothi; Muthusamy Thangaraju

Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.


Oncogene | 2009

Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration.

Shi-Bing Su; Y Li; Y Luo; Y Sheng; Y Su; Ravi Padia; Zhixing K. Pan; Zheng Dong; Shuang Huang

Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor that is activated by trypsin-like proteinases. PAR2 is detected in breast tumor specimens; however, it is not clear how PAR2 level in breast cancer cell/tissues compares with normal cell/tissues. Here, we show the elevation of PAR2 protein level in 76 of 105 breast tumor specimens but only 5 of 24 normal breast tissues. PAR2 level is also higher in breast cancer cell lines than that in normal breast cells and non-cancerous breast cell lines. To determine the role of PAR2 in breast carcinogenesis, we examined the effect of PAR2 agonists on cell proliferation and migration. Our studies show that PAR2 agonists (PAR2-activating peptide and trypsin) are neither potent growth enhancers nor chemoattractants to breast cancer cells. Instead, PAR2 agonists induce significant chemokinesis. PAR2-mediated chemokinesis is Gαi-dependent, and inhibiting Src kinase activity or silencing c-Src expression blocks PAR2-mediated chemokinesis. These results suggest that c-Src works downstream of Gαi to mediate this PAR2 agonist-induced event. To characterize c-Src effector, we reveal that PAR2 agonists activate JNKs in a Src-dependent manner and that JNK activity is essential for PAR2-mediated chemokinesis. Moreover, PAR2 agonist stimulation leads to paxillin Ser178 phosphorylation and paxillin(S178A) mutant inhibits PAR2-mediated chemokinesis. In conclusion, our studies show that PAR2 agonists facilitate breast cancer cell chemokinesis through the Gαi-c-Src-JNK-paxillin signaling pathway.


Cancer Research | 2014

The Niacin/Butyrate Receptor GPR109A Suppresses Mammary Tumorigenesis by Inhibiting Cell Survival

Selvakumar Elangovan; Rajneesh Pathania; Sudha Ananth; Ravi Padia; Ling Lan; Nagendra Singh; Pamela M. Martin; Lesleyann Hawthorn; Puttur D. Prasad; Vadivel Ganapathy; Muthusamy Thangaraju

GPR109A, a G-protein-coupled receptor, is activated by niacin and butyrate. Upon activation in colonocytes, GPR109A potentiates anti-inflammatory pathways, induces apoptosis, and protects against inflammation-induced colon cancer. In contrast, GPR109A activation in keratinocytes induces flushing by activation of Cox-2-dependent inflammatory signaling, and the receptor expression is upregulated in human epidermoid carcinoma. Thus, depending on the cellular context and tissue, GPR109A functions either as a tumor suppressor or a tumor promoter. However, the expression status and the functional implications of this receptor in the mammary epithelium are not known. Here, we show that GPR109A is expressed in normal mammary tissue and, irrespective of the hormone receptor status, its expression is silenced in human primary breast tumor tissues, breast cancer cell lines, and in tumor tissues of three different murine mammary tumor models. Functional expression of this receptor in human breast cancer cell lines decreases cyclic AMP production, induces apoptosis, and blocks colony formation and mammary tumor growth. Transcriptome analysis revealed that GPR109A activation inhibits genes, which are involved in cell survival and antiapoptotic signaling, in human breast cancer cells. In addition, deletion of Gpr109a in mice increased tumor incidence and triggered early onset of mammary tumorigenesis with increased lung metastasis in MMTV-Neu mouse model of spontaneous breast cancer. These findings suggest that GPR109A is a tumor suppressor in mammary gland and that pharmacologic induction of this gene in tumor tissues followed by its activation with agonists could be an effective therapeutic strategy to treat breast cancer.


Science Signaling | 2013

Signaling by p38 MAPK Stimulates Nuclear Localization of the Microprocessor Component p68 for Processing of Selected Primary MicroRNAs

Sungguan Hong; Hyangsoon Noh; Haoming Chen; Ravi Padia; Zhixing K. Pan; Shi Bing Su; Qing Jing; Han Fei Ding; Shuang Huang

An early step in microRNA processing depends on signaling downstream of the p38 mitogen-activated protein kinase. Promoting MicroRNA Production MicroRNAs (miRNAs) are small noncoding RNAs that target specific mRNAs for degradation or block their translation, thus leading to knockdown of given gene products. Posttranscriptional generation of miRNAs requires the nuclear processing of primary miRNAs (pri-miRNAs) by components of the Drosha-containing complex followed by the cytosolic processing of the resulting precursor miRNAs (pre-miRNAs) by the Dicer complex to generate mature miRNAs. Hong et al. found that inhibition of the mitogen-activated protein kinase (MAPK) p38 and its effector kinase MK2 blocked the processing of a subset of pri-miRNAs. In the cytosol, MK2 phosphorylated the Drosha complex component p68, which was required for its translocation to the nucleus for pri-miRNA processing. Inhibition of p38 signaling in cells decreased the production of miR-145, which targets the mRNA encoding c-Myc, resulting in increased c-Myc abundance and enhanced proliferation. Together, these data suggest that p38 MAPK signaling is required for selected miRNA biogenesis by promoting the nuclear localization of p68. The importance of microRNAs (miRNAs) in biological and disease processes necessitates a better understanding of the mechanisms that regulate miRNA abundance. We showed that the activities of the mitogen-activated protein kinase (MAPK) p38 and its downstream effector kinase MAPK-activated protein kinase 2 (MK2) were necessary for the efficient processing of a subset of primary miRNAs (pri-miRNAs). Through yeast two-hybrid screening, we identified p68 (also known as DDX5), a key component of the Drosha complex that processes pri-miRNAs, as an MK2-interacting protein, and we found that MK2 phosphorylated p68 at Ser197 in cells. In wild-type mouse embryonic fibroblasts (MEFs) treated with a p38 inhibitor or in MK2-deficient (MK2−/−) MEFs, expression of a phosphomimetic mutant p68 fully restored pri-miRNA processing, suggesting that MK2-mediated phosphorylation of p68 was essential for this process. We found that, whereas p68 was present in the nuclei of wild-type MEFs, it was found mostly in the cytoplasm of MK2−/− MEFs. Nuclear localization of p68 depended on MK2-mediated phosphorylation of Ser197. In addition, inhibition of p38 MAPK promoted the growth of wild-type MEFs and breast cancer MCF7 cells by enhancing the abundance of c-Myc through suppression of the biogenesis of the miRNA miR-145, which targets c-Myc. Because pri-miRNA processing occurs in the nucleus, our findings suggest that the p38 MAPK–MK2 signaling pathway promotes miRNA biogenesis by facilitating the nuclear localization of p68.


Molecular and Cellular Biology | 2013

Molecular mechanism of SLC5A8 inactivation in breast cancer.

Selvakumar Elangovan; Rajneesh Pathania; Sudha Ananth; Ravi Padia; Sonne R. Srinivas; Ellappan Babu; Lesleyann Hawthorn; Thomas Boettger; Sylvia B. Smith; Puttur D. Prasad; Vadivel Ganapathy; Muthusamy Thangaraju

ABSTRACT SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRASG12V) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.


Cancer Research | 2014

Abstract 2461: SLC5A8: A strategic target for advanced metastatic breast cancer

Rajneesh Pathania; Ravi Padia; Selvakumar Elangovan; Veena Coothankandaswamy; Puttur D. Prasad; Vadivel Ganapathy; Muthusamy Thangaraju

Despite intense efforts and great advances in cancer research, breast cancer remains the leading cause of death among women worldwide. Most breast cancer-related deaths are not due to cancer at the primary site, but rather due to metastasis, a process in which cancer cells spread from the primary site to distant secondary sites like lung, bones and brain. However, the molecular mechanism by which tumor cells invade from primary tumor site to distant metastasis has not been identified. Recently, we identified a tumor suppressor SLC5A8, which is not only prevent the mammary tumor incidence but also blocks tumor-metastasis by inactivating several metastasis-deriving molecules. SLC5A8, a transporter for small-chain fatty acids (SCFA) and monocarboxylates, is silenced in more than 10 different types of cancers including breast cancer. In breast cancer, irrespective of estrogen-receptor status SLC5A8 is inactivated in more than 90% of breast tumor tissues and in breast cancer cell lines. Ectopic expression of SLC5A8 in human breast cancer cells leads to translocation of the anti-apoptotic protein survivin to the plasma membrane through protein-protein interaction, thereby depleting nuclear survivin level. Further, tetracycline-inducible SLC5A8 expression in human breast cancer cells significantly reduced mammary tumor growth. In addition, functional inactivation of SLC5A8 in human immortalized normal mammary epithelial cells by lentivirus expressing shRNA showed differential regulation of genes that are involved in cellular transformation, oncogenesis, epithelial-mesenchymal-transition (EMT) and tumor metastasis. This is a totally unexpected finding and represents first of its kind for a plasma membrane transporter where mere expression itself, independent of its substrates, leads to tumor suppression. Reinforcing our findings further, deletion of Slc5a8 in mice is associated with increased stem/progenitor cells and mammary gland hyperplasia. By crossing the Slc5a8-null mice with spontaneous mouse mammary tumor mice, we observed increased cancer-initiating stem cells, early onset of mammary tumor formation and increased incidence of lung metastasis. More fascinatingly, mammary gland-specific overexpression of Slc5a8 or induction of endogenous Slc5a8 expression efficiently protects mice from breast cancer and associated lung metastasis resulting in extended life-span. Overall, our study provide a strong mechanism based evidence that SLC5A8 is a novel tumor suppressor in the mammary epithelium and it could be used as a potential new therapeutic target for treatment of breast cancer. Citation Format: Sabarish Ramachandran, Rajneesh Pathania, Ravi N. Padia, Selvakumar Elangovan, Veena Coothankandaswamy, Puttur D. Prasad, Vadivel Ganapathy, Muthusamy Thangaraju. SLC5A8: A strategic target for advanced metastatic breast cancer. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2461. doi:10.1158/1538-7445.AM2014-2461


Neoplasia | 2013

COP1 and GSK3β Cooperate to Promote c-Jun Degradation and Inhibit Breast Cancer Cell Tumorigenesis

Jing Shao; Yong Teng; Ravi Padia; Sungguan Hong; Hyangsoon Noh; Xiayang Xie; Jeff S. Mumm; Zheng Dong; Han Fei Ding; John K. Cowell; Jaejik Kim; Jiahuai Han; Shuang Huang

Collaboration


Dive into the Ravi Padia's collaboration.

Top Co-Authors

Avatar

Vadivel Ganapathy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Puttur D. Prasad

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Rajneesh Pathania

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Huang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Zheng Dong

Central South University

View shared research outputs
Top Co-Authors

Avatar

Han Fei Ding

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Huidong Shi

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Hyangsoon Noh

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge