Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravi Tandon is active.

Publication


Featured researches published by Ravi Tandon.


Journal of Clinical Investigation | 2012

HERV-K–specific T cells eliminate diverse HIV-1/2 and SIV primary isolates

R. Brad Jones; Keith E. Garrison; Shariq Mujib; Vesna Mihajlovic; Nasra Aidarus; Diana V. Hunter; Eric Martin; Vivek M. John; Wei Zhan; Nabil F. Faruk; Gabor Gyenes; Neil C. Sheppard; Ingrid M. Priumboom-Brees; David Goodwin; Lianchun Chen; Melanie Rieger; Sophie Muscat-King; Peter T. Loudon; Cole Stanley; Sara J. Holditch; Jessica C. Wong; Kiera L. Clayton; Erick H. Duan; Haihan Song; Yang Xu; Devi SenGupta; Ravi Tandon; Jonah B. Sacha; Mark A. Brockman; Erika Benko

The genetic diversity of HIV-1 represents a major challenge in vaccine development. In this study, we establish a rationale for eliminating HIV-1-infected cells by targeting cellular immune responses against stable human endogenous retroviral (HERV) antigens. HERV DNA sequences in the human genome represent the remnants of ancient infectious retroviruses. We show that the infection of CD4+ T cells with HIV-1 resulted in transcription of the HML-2 lineage of HERV type K [HERV-K(HML-2)] and the expression of Gag and Env proteins. HERV-K(HML-2)-specific CD8+ T cells obtained from HIV-1-infected human subjects responded to HIV-1-infected cells in a Vif-dependent manner in vitro. Consistent with the proposed mode of action, a HERV-K(HML-2)-specific CD8+ T cell clone exhibited comprehensive elimination of cells infected with a panel of globally diverse HIV-1, HIV-2, and SIV isolates in vitro. We identified a second T cell response that exhibited cross-reactivity between homologous HIV-1-Pol and HERV-K(HML-2)-Pol determinants, raising the possibility that homology between HIV-1 and HERVs plays a role in shaping, and perhaps enhancing, the T cell response to HIV-1. This justifies the consideration of HERV-K(HML-2)-specific and cross-reactive T cell responses in the natural control of HIV-1 infection and for exploring HERV-K(HML-2)-targeted HIV-1 vaccines and immunotherapeutics.


Journal of Virology | 2011

Strong Human Endogenous Retrovirus-Specific T Cell Responses Are Associated with Control of HIV-1 in Chronic Infection

Devi SenGupta; Ravi Tandon; R. G. S. Vieira; Lishomwa C. Ndhlovu; R. Lown-Hecht; Christopher E. Ormsby; L. Loh; Richard Bradley Jones; Keith E. Garrison; Jeffrey N. Martin; Vanessa A. York; G. Spotts; Gustavo Reyes-Terán; Mario A. Ostrowski; Frederick Hecht; Steven G. Deeks; Douglas F. Nixon

ABSTRACT Eight percent of the human genome is composed of human endogenous retroviruses (HERVs), which are thought to be inactive remnants of ancient infections. Previously, we showed that individuals with early HIV-1 infection have stronger anti-HERV T cell responses than uninfected controls. In this study, we investigated whether these responses persist in chronic HIV-1 infection and whether they have a role in the control of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 88 subjects diagnosed with HIV-1 infection for at least 1 year (median duration of diagnosis, 13 years) were tested for responses against HERV peptides in gamma interferon (IFN-γ) enzyme immunospot (ELISPOT) assays. Individuals who control HIV-1 viremia without highly active antiretroviral therapy (HAART) had stronger and broader HERV-specific T cell responses than HAART-suppressed patients, virologic noncontrollers, immunologic progressors, and uninfected controls (P < 0.05 for each pairwise comparison). In addition, the magnitude of the anti-HERV T cell response was inversely correlated with HIV-1 viral load (r 2 = 0.197, P = 0.0002) and associated with higher CD4+ T cell counts (r 2 = 0.072, P = 0.027) in untreated patients. Flow cytometric analyses of an HLA-B51-restricted CD8+ HERV response in one HIV-1-infected individual revealed a less activated and more differentiated phenotype than that stimulated by a homologous HIV-1 peptide. HLA-B51 tetramer dual staining within this individual confirmed two different T cell populations corresponding to these HERV and HIV-1 epitopes, ruling out cross-reactivity. These findings suggest a possible role for anti-HERV immunity in the control of chronic HIV-1 infection and provide support for a larger effort to design an HIV-1 vaccine that targets conserved antigens such as HERV.


Journal of Virology | 2011

Identification of Human Endogenous Retrovirus-Specific T Cell Responses in Vertically HIV-1-Infected Subjects

Ravi Tandon; Devi SenGupta; Lishomwa C. Ndhlovu; R. G. S. Vieira; Richard Bradley Jones; Vanessa A. York; V. A. Vieira; Elizabeth R. Sharp; Andrew Wiznia; Mario A. Ostrowski; Michael G. Rosenberg; Douglas F. Nixon

ABSTRACT Human endogenous retrovirus (HERV)-specific T cell responses in HIV-1-infected adults have been reported. Whether HERV-specific immunity exists in vertically HIV-1-infected children is unknown. We performed a cross-sectional analysis of HERV-specific T cell responses in 42 vertically HIV-1-infected children. HERV (-H, -K, and -L family)-specific T cell responses were identified in 26 of 42 subjects, with the greatest magnitude observed for the responses to HERV-L. These HERV-specific T cell responses were inversely correlated with the HIV-1 plasma viral load and positively correlated with CD4+ T cell counts. These data indicate that HERV-specific T cells may participate in controlling HIV-1 replication and that certain highly conserved HERV-derived proteins may serve as promising therapeutic vaccine targets in HIV-1-infected children.


PLOS ONE | 2012

Human endogenous retrovirus expression is inversely associated with chronic immune activation in HIV-1 infection

Christopher E. Ormsby; Devi SenGupta; Ravi Tandon; Steven G. Deeks; Jeffrey N. Martin; R. Brad Jones; Mario A. Ostrowski; Keith E. Garrison; Joel A. Vázquez-Pérez; Gustavo Reyes-Terán; Douglas F. Nixon

Human endogenous retroviruses (HERV) are remnants of ancestral retroviral infections integrated into the germ line, and constitute approximately 8% of the genome. Several autoimmune disorders, malignancies, and infectious diseases such as HIV-1 are associated with higher HERV expression. The degree to which HERV expression in vivo results in persistent inflammation is not known. We studied the association of immune activation and HERV-K expression in 20 subjects with chronic, untreated progressive HIV-1 infection and 10 HIV-1 negative controls. The mean HERV-K gag and env RNA expression level in the HIV-1 infected cohort was higher than in the control group (p = 0.0003), and was negatively correlated with the frequency of activated CD38+HLA-DR+CD4+ T cells (Rho = −0.61; p = 0.01) and activated CD38+HLA-DR+CD8+ T cells (Rho  = −0.51; p = 0.03). Although HIV-infected persons had higher levels of HERV-K RNA expression (as expected), the level of RNA expression was negatively associated with level of T cell activation. The mechanism for this unexpected association remains to be defined.


PLOS ONE | 2012

Age-Related Expansion of Tim-3 Expressing T Cells in Vertically HIV-1 Infected Children

Ravi Tandon; Maria Teresa M. Giret; Devi SenGupta; Vanessa A. York; Andrew Wiznia; Michael G. Rosenberg; Esper G. Kallas; Lishomwa C. Ndhlovu; Douglas F. Nixon

As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an “immune exhaustion”, with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28−CD57+CD8+ T cells between the groups. However, the frequency of Tim-3+CD8+ and Tim-3+CD4+ exhausted T cells, but not PD-1+ T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1+CD8+ T cells were directly associated with T cell immune activation in children. The frequency of Tim-3+CD8+ T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.


Journal of Virology | 2015

Soluble T Cell Immunoglobulin Mucin Domain 3 Is Shed from CD8+ T Cells by the Sheddase ADAM10, Is Increased in Plasma during Untreated HIV Infection, and Correlates with HIV Disease Progression

Kiera L. Clayton; Matthew Douglas-Vail; A. K. M. Nur-ur Rahman; Karyn E. Medcalf; Irene Y. Xie; Glen M. Chew; Ravi Tandon; Marion C. Lanteri; Philip J. Norris; Steven G. Deeks; Lishomwa C. Ndhlovu; Mario A. Ostrowski

ABSTRACT Chronic HIV infection results in a loss of HIV-specific CD8+ T cell effector function, termed “exhaustion,” which is mediated, in part, by the membrane coinhibitory receptor T cell immunoglobulin mucin domain-3 (Tim-3). Like many other receptors, a soluble form of this protein has been described in human blood plasma. However, soluble Tim-3 (sTim-3) is poorly characterized, and its role in HIV disease is unknown. Here, we show that Tim-3 is shed from the surface of responding CD8+ T cells by the matrix metalloproteinase ADAM10, producing a soluble form of the coinhibitory receptor. Despite previous reports in the mouse model, no alternatively spliced, soluble form of Tim-3 was observed in humans. Shed sTim-3 was found in human plasma and was significantly elevated during early and chronic untreated HIV infection, but it was not found differentially modulated in highly active antiretroviral therapy (HAART)-treated HIV-infected subjects or in elite controllers compared to HIV-uninfected subjects. Plasma sTim-3 levels were positively correlated with HIV load and negatively correlated with CD4 counts. Thus, plasma sTim-3 shedding correlated with HIV disease progression. Despite these correlations, we found that shedding Tim-3 did not improve the function of CD8+ T cells in terms of gamma interferon production or prevent their apoptosis through galectin-9. Further characterization studies of sTim-3 function are needed to understand the contribution of sTim-3 in HIV disease pathogenesis, with implications for novel therapeutic interventions. IMPORTANCE Despite the overall success of HAART in slowing the progression to AIDS in HIV-infected subjects, chronic immune activation and T cell exhaustion contribute to the eventual deterioration of the immune system. Understanding these processes will aid in the development of interventions and therapeutics to be used in combination with HAART to slow or reverse this deterioration. Here, we show that a soluble form of T cell exhaustion associated coinhibitory molecule 3, sTim-3, is shed from the surface of T cells. Furthermore, sTim-3 is elevated in the plasma of treatment-naive subjects with acute or chronic HIV infection and is associated with markers of disease progression. This is the first study to characterize sTim-3 in human plasma, its source, and mechanism of production. While it is still unclear whether sTim-3 contributes to HIV pathogenesis, sTim-3 may represent a new correlate of HIV disease progression.


Clinical and Vaccine Immunology | 2012

Human endogenous retrovirus K(HML-2) Gag- and Env-specific T-cell responses are infrequently detected in HIV-1-infected subjects using standard peptide matrix-based screening

R. Brad Jones; Vivek M. John; Diana V. Hunter; Eric Martin; Shariq Mujib; Vesna Mihajlovic; Peter C. Burgers; Theo M. Luider; Gabor Gyenes; Neil C. Sheppard; Devi SenGupta; Ravi Tandon; Feng-Yun Yue; Erika Benko; Colin Kovacs; Douglas F. Nixon; Mario A. Ostrowski

ABSTRACT T-cell responses to human endogenous retrovirus (HERV) K(HML-2) Gag and Env were mapped in HIV-1-infected subjects using 15mer peptides. Small peptide pools and high concentrations were used to maximize sensitivity. In the 23 subjects studied, only three bona fide HERV-K(HML-2)-specific responses were detected. At these high peptide concentrations, we detected false-positive responses, three of which were mapped to an HIV-1 Gag peptide contaminant. Thus, HERV-K(HML-2) Gag- and Env-specific T-cell responses are infrequently detected by 15mer peptide mapping.


Biochemical and Biophysical Research Communications | 2015

Understanding V(D)J recombination initiator RAG1 gene using molecular phylogenetic and genetic variant analyses and upgrading missense and non-coding variants of clinical importance.

Abhishek Kumar; Anita Bhandari; Sandeep J. Sarde; Sekhar Muppavarapu; Ravi Tandon

The recombination-activating genes (RAGs) encode for V(D)J recombinases responsible for rearrangements of antigen-receptor genes during T and B cell development, and RAG expression is known to correlate strictly with the process of rearrangement. There have been several studies of RAG1 illustrating biochemical, physiological and immunological properties. Hitherto, there are limited studies on RAG1 focusing molecular phylogenetic analyses, evolutionary traits, and genetic variants in human populations. Hence, there is a need of a comprehensive study on this topic. In the current report, we have shed light into insights of evolutionary traits and genetic variants of human RAG1 gene using 1092 genomes from human populations. Syntenic analyses revealed that two RAG genes are physically linked and conserved on the same locus in head-to-head orientation from sea urchin to human for about 550 MY. Spliceosomal introns have been in invaded in fishes and sea urchin, whereas gene structures of RAG1 gene from tetrapods remained single exon architecture. We compiled 751 genetic variants in human RAG1 gene using 1092 human genomes; where major stockholders of variant classes are 79% single nucleotide polymorphisms (SNPs), 12.2% somatic single nucleotide variants (somatic SNVs) and 6.8% deletion. Out of 267 missense variants, 140 are deleterious mutations. We identified 284 non-coding variants with 94% regulatory in nature.


Journal of Virology | 2013

T Cells Target APOBEC3 Proteins in Human Immunodeficiency Virus Type 1-Infected Humans and Simian Immunodeficiency Virus-Infected Indian Rhesus Macaques

Stephane Champiat; Keith E. Garrison; Rui André Saraiva Raposo; Benjamin J. Burwitz; Jason S. Reed; Ravi Tandon; Vanessa A. York; Laura P. Newman; Francesca A. Nimityongskul; Nancy A. Wilson; Rafael Ribeiro Almeida; Jeffrey N. Martin; Steven G. Deeks; Michael G. Rosenberg; Andrew Wiznia; Gerald Spotts; Christopher D. Pilcher; Fredrick M. Hecht; Mario A. Ostrowski; Jonah B. Sacha; Douglas F. Nixon

ABSTRACT APOBEC3 proteins mediate potent antiretroviral activity by hypermutating the retroviral genome during reverse transcription. To counteract APOBEC3 and gain a replicative advantage, lentiviruses such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have evolved the Vif protein, which targets APOBEC3 proteins for proteasomal degradation. However, the proteasome plays a critical role in the generation of T cell peptide epitopes. Whether Vif-mediated destruction of APOBEC3 proteins leads to the generation and presentation of APOBEC3-derived T cell epitopes on the surfaces of lentivirus-infected cells remains unknown. Here, using peptides derived from multiple Vif-sensitive APOBEC3 proteins, we identified APOBEC3-specific T cell responses in both HIV-1-infected patients and SIV-infected rhesus macaques. These results raise the possibility that these T cell responses may be part of the larger antiretroviral immune response.


Data in Brief | 2016

Data on the evolutionary history of the V(D)J recombination-activating protein 1 – RAG1 coupled with sequence and variant analyses

Abhishek Kumar; Anita Bhandari; Sandeep J. Sarde; Sekhar Muppavarapu; Ravi Tandon

RAG1 protein is one of the key component of RAG complex regulating the V(D)J recombination. There are only few studies for RAG1 concerning evolutionary history, detailed sequence and mutational hotspots. Herein, we present out datasets used for the recent comprehensive study of RAG1 based on sequence, phylogenetic and genetic variant analyses (Kumar et al., 2015) [1]. Protein sequence alignment helped in characterizing the conserved domains and regions of RAG1. It also aided in unraveling ancestral RAG1 in the sea urchin. Human genetic variant analyses revealed 751 mutational hotspots, located both in the coding and the non-coding regions. For further analysis and discussion, see (Kumar et al., 2015) [1].

Collaboration


Dive into the Ravi Tandon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lishomwa C. Ndhlovu

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Devi SenGupta

University of California

View shared research outputs
Top Co-Authors

Avatar

Douglas F. Nixon

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen M. Chew

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge