Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca D. Burwell is active.

Publication


Featured researches published by Rebecca D. Burwell.


Behavioral Neuroscience | 1993

Severity of spatial learning impairment in aging: Development of a learning index for performance in the morris water maze

Michela Gallagher; Rebecca D. Burwell; Margaret Burchinal

The Morris water maze task was originally designed to assess the rats ability to learn to navigate to a specific location in a relatively large spatial environment. This article describes new measures that provide information about the spatial distribution of the rats search during both training and probe trial performance. The basic new measure optimizes the use of computer tracking to identify the rats position with respect to the target location. This proximity measure was found to be highly sensitive to age-related impairment in an assessment of young and aged male Long-Evans rats. Also described is the development of a learning index that provides a continuous, graded measure of the severity of age-related impairment in the task. An index of this type should be useful in correlational analyses with other neurobiological or behavioral measures for the study of individual differences in functional/biological decline in aging.


The Journal of Comparative Neurology | 1998

Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat

Rebecca D. Burwell; David G. Amaral

We have divided the cortical regions surrounding the rat hippocampus into three cytoarchitectonically discrete cortical regions, the perirhinal, the postrhinal, and the entorhinal cortices. These regions appear to be homologous to the monkey perirhinal, parahippocampal, and entorhinal cortices, respectively. The origin of cortical afferents to these regions is well‐documented in the monkey but less is known about them in the rat. The present study investigated the origins of cortical input to the rat perirhinal (areas 35 and 36) and postrhinal cortices and the lateral and medial subdivisions of the entorhinal cortex (LEA and MEA) by placing injections of retrograde tracers at several locations within each region. For each experiment, the total numbers of retrogradely labeled cells (and cell densities) were estimated for 34 cortical regions. We found that the complement of cortical inputs differs for each of the five regions. Area 35 receives its heaviest input from entorhinal, piriform, and insular areas. Area 36 receives its heaviest projections from other temporal cortical regions such as ventral temporal association cortex. Area 36 also receives substantial input from insular and entorhinal areas. Whereas area 36 receives similar magnitudes of input from cortices subserving all sensory modalities, the heaviest projections to the postrhinal cortex originate in visual associational cortex and visuospatial areas such as the posterior parietal cortex. The cortical projections to the LEA are heavier than to the MEA and differ in origin. The LEA is primarily innervated by the perirhinal, insular, piriform, and postrhinal cortices. The MEA is primarily innervated by the piriform and postrhinal cortices, but also receives minor projections from retrosplenial, posterior parietal, and visual association areas. J. Comp. Neurol. 398:179–205, 1998.


Annals of the New York Academy of Sciences | 2006

The Parahippocampal Region: Corticocortical Connectivity

Rebecca D. Burwell

Abstract: The parahippocampal region, as defined in this review, comprises the cortical regions that surround the rodent hippocampus including the perirhinal, postrhinal, and entorhinal cortices. The comparable regions in the primate brain are the perirhinal, parahippocampal, and entorhinal cortices. The perirhinal and postrhinal/parahippocampal cortices provide the major polysensory input to the hippocampus through their entorhinal connections and are the recipients of differing combinations of sensory information. The differences in the perirhinal and postrhinal cortical afferentation have important functional implications, in part, because these two regions project with different terminal patterns to the entorhinal cortex. The perirhinal cortex projects preferentially to the lateral entorhinal area (LEA), and the postrhinal cortex projects preferentially to the medial entorhinal area (MEA) and the caudal portion of LEA. Although the perirhinal and postrhinal cortices provide the major cortical input to the entorhinal cortex, the entorhinal cortex itself receives some direct cortical input. An examination of the cortical afferentation of the entorhinal cortex reveals an interesting principle of connectivity among these regions; the composition of the direct neocortical input to the LEA is more similar to that of the perirhinal cortex, and the composition of the direct neocortical input to the MEA is more similar to that of the postrhinal cortex. Thus, polymodal associational input to the LEA and the MEA exhibits some segregation and is organized in parallel. The organization of intrinsic connections for each of the parahippocampal regions also contributes to the segregation of information into parallel pathways.


The Journal of Comparative Neurology | 1998

Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex

Rebecca D. Burwell; David G. Amaral

The cortical regions dorsally adjacent to the posterior rhinal sulcus in the rat can be divided into a rostral region, the perirhinal cortex, which shares features of the monkey perirhinal cortex, and a caudal region, the postrhinal cortex, which has connectional attributes similar to the monkey parahippocampal cortex. We examined the connectivity among the rat perirhinal (areas 35 and 36), postrhinal, and entorhinal cortices by placing anterograde and retrograde tracers in all three regions. There is a dorsal‐to‐ventral cascade of connections in the perirhinal and entorhinal cortices. Dorsal area 36 projects strongly to ventral area 36, and ventral area 36 projects strongly to area 35. The return projections are substantially weaker. The cascade continues with the perirhinal to entorhinal connections. Area 35 is more strongly interconnected with the entorhinal cortex, ventral area 36 somewhat less strongly, and dorsal area 36 projects only weakly to the entorhinal cortex. The postrhinal‐to‐perirhinal connections also follow this general pattern. The postrhinal cortex is more heavily connected with dorsal area 36 than with ventral area 36 and is more heavily connected with area 36 than with area 35. The rostral portion of the postrhinal cortex has the strongest connections with the perirhinal cortex. Like in the monkey, the perirhinal and postrhinal cortices have different patterns of projections to the entorhinal cortex. The perirhinal cortex is preferentially connected with the rostrolateral portion of the entorhinal cortex. The postrhinal cortex projects to a part of this same region but is also connected to caudal and medial portions of the entorhinal cortex. The perirhinal and postrhinal projections to the entorhinal cortex originate in layers III and V and terminate preferentially in layers II and III. J. Comp. Neurol. 391:293–321, 1998.


The Journal of Comparative Neurology | 2001

Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat.

Rebecca D. Burwell

Cytoarchitectonic and histochemical analyses were carried out for perirhinal areas 35 and 36 and the postrhinal cortex, providing the first detailed cytoarchitectonic study of these regions in the rat brain. The rostral perirhinal border with insular cortex is at the extreme caudal limit of the claustrum, consistent with classical definitions of insular cortex dating back to Rose ([ 1928 ] J. Psychol. Neurol. 37:467–624). The border between the perirhinal and postrhinal cortices is at the caudal limit of the angular bundle, as previously proposed by Burwell et al. ([ 1995 ] Hippocampus 5:390–408). The ventral borders with entorhinal cortex are consistent with the Insausti et al. ([ 1997 ] Hippocampus 7:146–183) description of that region and the Dolorfo and Amaral ([ 1998 ] J. Comp. Neurol. 398:25–48) connectional findings. Regarding the remaining borders, both the perirhinal and postrhinal cortices encroach upon temporal cortical regions as defined by others (e.g., Zilles [ 1990 ] The cerebral cortex of the rat, p 77–112; Paxinos and Watson [ 1998 ] The rat brain in stereotaxic coordinates). Based on cytoarchitectonic and histochemical criteria, perirhinal areas 35 and 36 and the postrhinal cortex were further subdivided. Area 36 was parceled into three subregions, areas 36d, 36v, and 36p. Area 35 was parceled into two cytoarchitectonically distinctive subregions, areas 35d and 35v. The postrhinal cortex was divided into two subregions, areas PORd and PORv. These regional definitions of perirhinal areas 35 and 36 and the postrhinal cortex were confirmed by new empirical analyses of previously reported quantitative connectional data (Burwell and Amaral [ 1998a ] J. Comp. Neurol. 398:179–205). J. Comp. Neurol. 437:17–41, 2001.


The Journal of Neuroscience | 2004

Corticohippocampal Contributions to Spatial and Contextual Learning

Rebecca D. Burwell; Michael P. Saddoris; David J. Bucci; Kjesten A. Wiig

Spatial and contextual learning are considered to be dependent on the hippocampus, but the extent to which other structures in the medial temporal lobe memory system support these functions is not well understood. This study examined the effects of individual and combined lesions of the perirhinal, postrhinal, and entorhinal cortices on spatial and contextual learning. Lesioned subjects were consistently impaired on measures of contextual fear learning and consistently unimpaired on spatial learning in the Morris water maze. Neurotoxic lesions of perirhinal or postrhinal cortex that were previously shown to impair contextual fear conditioning (Bucci et al., 2000) or contextual discrimination (Bucci et al., 2002) caused little or no impairment in place learning and incidental learning in the water maze. Combined lesions of perirhinal plus lateral entorhinal or postrhinal plus medial entorhinal cortices resulted in deficits in acquisition of contextual discrimination but had no effect on place learning in the water maze. Finally, a parahippocampal lesion comprising combined neurotoxic damage to perirhinal, postrhinal, and entorhinal cortices resulted in profound impairment in acquisition of a standard passive avoidance task but failed to impair place learning. In the same experiment, rats with hippocampal lesions were impaired in spatial navigation. These results indicate that tasks requiring the association between context and an aversive stimulus depend on corticohippocampal circuitry, whereas place learning in the water maze can be accomplished without the full complement of highly processed information from the cortical regions surrounding the hippocampus. The evidence that different brain systems underlie spatial navigation and contextual learning has implications for research on memory when parahippocampal regions are involved.


Neurobiology of Aging | 1990

Markers for biogenic amines in the aged rat brain: Relationship to decline in spatial learning ability

Michela Gallagher; Rebecca D. Burwell; Matthew H. Kodsi; Michael McKinney; Stan B. Southerland; Lorraine Vella-Rountree; Mark H. Lewis

The major goal of the study was to evaluate the relationship of brain aging to individual differences in functional decline in rats. Forebrain choline-acetyltransferase (ChAT) and monoamines, including their metabolites, were examined in young and aged male Long-Evans rats in relation to their spatial learning ability. Aged rats that were unimpaired on a spatial learning task exhibited few changes in neurochemistry relative to the young group: each change in this subgroup was also evident in the remaining aged animals that were behaviorally impaired. Additional changes in neurochemical measures only found in the behaviorally impaired aged animals included decreased ChAT in the basal forebrain, striatum, and frontal cortex. A cluster analysis using the 15 neurochemical measures that were sensitive to aging yielded groupings of aged animals that differed with respect to their spatial learning ability, but not in their cue learning latencies. In this analysis the activity of ChAT in the basal forebrain and striatum appeared to be the best predictors of spatial learning impairment.


Behavioral Neuroscience | 2000

Contributions of Postrhinal and Perirhinal Cortex to Contextual Information Processing

David J. Bucci; Russell G. Phillips; Rebecca D. Burwell

The role of the postrhinal cortex (POR) and the perirhinal cortex (PER) in processing relational or contextual information was examined with Pavlovian fear conditioning. Rats with electrolytic or neurotoxic lesions of the POR or PER were tested in 2 contextual fear conditioning paradigms. In Experiment 1, electrolytic lesions of the POR or PER produced impairments in contextual fear conditioning but not in conditioning to a phasic auditory conditioned stimulus. Neurotoxic lesions of the POR or PER likewise resulted in anterograde (Experiment 2) and retrograde (Experiment 3) deficits in fear conditioning to the training context in an unsignaled shock paradigm. The results suggest that operations performed on sensory information by the POR and PER are necessary to support contextual learning.


Journal of Neural Engineering | 2012

Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications

Jing Wang; Fabien Wagner; David A. Borton; Jiayi Zhang; Ilker Ozden; Rebecca D. Burwell; A. V. Nurmikko; Rick Van Wagenen; Ilka Diester; Karl Deisseroth

Studying brain function and its local circuit dynamics requires neural interfaces that can record and stimulate the brain with high spatiotemporal resolution. Optogenetics, a technique that genetically targets specific neurons to express light-sensitive channel proteins, provides the capability to control central nervous system neuronal activity in mammals with millisecond time precision. This technique enables precise optical stimulation of neurons and simultaneous monitoring of neural response by electrophysiological means, both in the vicinity of and distant to the stimulation site. We previously demonstrated, in vitro, the dual capability (optical delivery and electrical recording) while testing a novel hybrid device (optrode-MEA), which incorporates a tapered coaxial optical electrode (optrode) and a 100 element microelectrode array (MEA). Here we report a fully chronic implant of a new version of this device in ChR2-expressing rats, and demonstrate its use in freely moving animals over periods up to 8 months. In its present configuration, we show the device delivering optical excitation to a single cortical site while mapping the neural response from the surrounding 30 channels of the 6 × 6 element MEA, thereby enabling recording of optically modulated single-unit and local field potential activity across several millimeters of the neocortical landscape.


The Journal of Neuroscience | 2004

Perirhinal and Postrhinal Contributions to Remote Memory for Context

Rebecca D. Burwell; David J. Bucci; Matthew R. Sanborn; Michael J. Jutras

The perirhinal (PER) and postrhinal (POR) cortices, two components of the medial temporal lobe memory system, are reciprocally connected with the hippocampus both directly and via the entorhinal cortex. Damage to PER or POR before or shortly after training on a contextual fear conditioning task causes deficits in the subsequent expression of contextual fear, implicating these regions in the acquisition or expression of contextual memory. Here, we examined the contribution of PER and POR to the processing of remotely learned contextual information. Male Long-Evans rats were trained in an unsignaled contextual fear conditioning paradigm. After training, rats received bilateral neurotoxic lesions to PER or POR or sham control surgeries at three different training-to-lesion intervals: 1, 28, or 100 d after training. Two weeks after surgery, lesioned and control rats were returned to the training context to assess contextual fear as measured by freezing. Rats with PER or POR damage froze significantly less in the training context than control rats but were not different from each other. The severity of the deficit did not differ across training-to-lesion intervals for any group. This pattern of deficits differs from that of posttraining hippocampal lesions, for which longer training-to-lesion intervals produce significantly more fear-conditioned contextual freezing than shorter training-to-lesion intervals. In the absence of such a retrograde gradient in the present study, our interpretation is that PER and POR have an ongoing role in the storage or retrieval of representations for context. Alternatively, these regions may be involved in a more extended consolidation process that becomes apparent beyond 100 d after learning.

Collaboration


Dive into the Rebecca D. Burwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Saddoris

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge