Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca L. Scalzo is active.

Publication


Featured researches published by Rebecca L. Scalzo.


The FASEB Journal | 2014

Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training

Rebecca L. Scalzo; Garrett L. Peltonen; Scott E. Binns; Mahalakshmi Shankaran; Gregory R. Giordano; Dylan A. Hartley; Anna L. Klochak; Mark C. Lonac; Hunter Paris; Steve E. Szallar; Lacey M. Wood; Frederick F. Peelor; William E. Holmes; Marc K. Hellerstein; Christopher Bell; Karyn L. Hamilton; Benjamin F. Miller

Improved endurance exercise performance in adult humans after sprint interval training (SIT) has been attributed to mitochondrial biogenesis. However, muscle protein synthesis (MPS) and mitochondrial biogenesis during SIT have not been measured, nor have sex‐specific differences. We hypothesized that males and females would have similar rates of MPS, mitochondrial biogenesis, and synthesis of individual proteins during SIT. Deuterium oxide (D2O) was orally administered to 21 adults [11 male, 10 female; mean age, 23±1 yr; body mass index (BMI), 22.8±0.6 kg/m2; mean± se] for 4 wk, to measure protein synthesis rates while completing 9 sessions of 4–8 bouts of 30 s duration on a cycle ergometer separated by 4 min of active recovery. Samples of the vastus lateralis were taken before and 48 h after SIT. SIT increased maximum oxygen uptake (VO2max, males 43.4±2.1–44.0±2.3; females 39.5±0.9–42.5±1.3 ml/kg/min; P=0.002). MPS was greater in the males than in the females in the mixed (~150%; P < 0.001), cytosolic (~135%; P=0.038), and mitochondrial (~135%; P=0.056) fractions. The corresponding ontological clusters of individual proteins were significantly greater in the males than in the females (all P<0.00001). For the first time, we document greater MPS and mitochondrial biogenesis during SIT in males than in females and describe the synthetic response of individual proteins in humans during exercise training.—Scalzo, R. L., Peltonen, G. L., Binns, S. E., Shankaran, M., Giordano, G. R., Hartley, D. A., Klochak, A. L., Lonac, M. C., Paris, H. L. R., Szallar, S. E., Wood, L. M., Peelor, F. F., III, Holmes, W. E., Hellerstein, M. K., Bell, C., Hamilton, K. L., Miller, B. F. Greater muscle protein synthesis and mitochondrial biogenesis in males than in females during sprint interval training. FASEB J. 28, 2705–2714 (2014). www.fasebj.org


The Journal of Physiology | 2012

Sympathetic inhibition attenuates hypoxia induced insulin resistance in healthy adult humans

Garrett L. Peltonen; Rebecca L. Scalzo; Melani M. Schweder; Dennis G. Larson; Gary J. Luckasen; David Irwin; Karyn L. Hamilton; Thies Schroeder; Christopher Bell

•  In low‐oxygen environments, such as high‐altitude, control of blood sugar is disrupted. Further, the activity of the sympathetic nervous system is known to increase when the availability of oxygen is decreased. •  We have investigated the possibility that the increase in sympathetic activity is partially responsible for the disruption in blood sugar control. •  Using gasbags filled with low‐oxygen gas, together with a commonly used blood pressure medication (clonidine) that inhibits the sympathetic nervous system, we have shown that breathing low oxygen disrupts blood sugar control, and that this disruption is prevented when the nervous system is inhibited. •  This finding has important implications for people travelling to high altitudes, and for people who suffer from conditions characterized by low oxygen, such as sleep apnoea and lung diseases.


PLOS ONE | 2014

Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training

Rebecca L. Scalzo; Garrett L. Peltonen; Gregory R. Giordano; Scott E. Binns; Anna L. Klochak; Hunter Paris; Melani M. Schweder; Steve E. Szallar; Lacey M. Wood; Dennis G. Larson; Gary J. Luckasen; Matthew S. Hickey; Christopher Bell

The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21) were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11). The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE), but was increased during hypoxia mediated sympathetic activation (368±135); this response was abrogated (P = 0.035) with clonidine (269±93). Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21). Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5) was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT). SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046) but did not affect FNDC5 (P = 0.79). Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045) and increased in females (139±14 vs. 170±18). Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT.


Physiological Reports | 2013

Total daily energy expenditure is increased following a single bout of sprint interval training

Kyle Sevits; Edward L. Melanson; Tracy Swibas; Scott E. Binns; Anna L. Klochak; Mark C. Lonac; Garrett L. Peltonen; Rebecca L. Scalzo; Melani M. Schweder; Amy Smith; Lacey M. Wood; Christopher L. Melby; Christopher Bell

Regular endurance exercise is an effective strategy for healthy weight maintenance, mediated via increased total daily energy expenditure (TDEE), and possibly an increase in resting metabolic rate (RMR: the single largest component of TDEE). Sprint interval training (SIT) is a low‐volume alternative to endurance exercise; however, the utility of SIT for healthy weight maintenance is less clear. In this regard, it is feasible that SIT may evoke a thermogenic response above and beyond the estimates required for prevention of weight gain (i.e., >200–600 kJ). The purpose of these studies was to investigate the hypotheses that a single bout of SIT would increase RMR and/or TDEE. Study 1: RMR (ventilated hood) was determined on four separate occasions in 15 healthy men. Measurements were performed over two pairs of consecutive mornings; each pair was separated by 7 days. Immediately following either the first or third RMR measurement (randomly assigned) subjects completed a single bout of SIT (cycle ergometer exercise). RMR was unaffected by a single bout of SIT (7195 ± 285 kJ/day vs. 7147 ± 222, 7149 ± 246 and 6987 ± 245 kJ/day (mean ± SE); P = 0.12). Study 2: TDEE (whole‐room calorimeter) was measured in 12 healthy men, on two consecutive days, one of which began with a single bout of SIT (random order). Sprint exercise increased TDEE in every research participant (9169 ± 243 vs. 10,111 ± 260 kJ/day; P < 0.0001); the magnitude of increase was 946 ± 62 kJ/day (~10%). These data provide support for SIT as a strategy for increasing TDEE, and may have implications for healthy body weight maintenance.


The Journal of Experimental Biology | 2014

High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria

Adam J. Chicco; Catherine H. Le; Amber Schlater; Alex Nguyen; Spencer Kaye; Joseph W. Beals; Rebecca L. Scalzo; Christopher Bell; Erich Gnaiger; Daniel P. Costa; Daniel E. Crocker; Shane B. Kanatous

Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory ‘leak’ compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.


Nutrition and Metabolic Insights | 2016

Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia–Reperfusion Injury

Janelle L. Davis; Hunter Paris; Joseph W. Beals; Scott E. Binns; Gregory R. Giordano; Rebecca L. Scalzo; Melani M. Schweder; Emek Blair; Christopher Bell

Intravenous administration of vitamin C has been shown to decrease oxidative stress and, in some instances, improve physiological function in adult humans. Oral vitamin C administration is typically less effective than intravenous, due in part to inferior vitamin C bioavailability. The purpose of this study was to determine the efficacy of oral delivery of vitamin C encapsulated in liposomes. On 4 separate randomly ordered occasions, 11 men and women were administered an oral placebo, or 4 g of vitamin C via oral, oral liposomal, or intravenous delivery. The data indicate that oral delivery of 4 g of vitamin C encapsulated in liposomes (1) produces circulating concentrations of vitamin C that are greater than unencapsulated oral but less than intravenous administration and (2) provides protection from ischemia–reperfusion-mediated oxidative stress that is similar to the protection provided by unencapsulated oral and intravenous administrations.


Journal of Nutrition and Metabolism | 2017

Concurrent Beet Juice and Carbohydrate Ingestion: Influence on Glucose Tolerance in Obese and Nonobese Adults

Joseph W. Beals; Scott E. Binns; Janelle L. Davis; Gregory R. Giordano; Anna L. Klochak; Hunter Paris; Melani M. Schweder; Garrett L. Peltonen; Rebecca L. Scalzo; Christopher Bell

Insulin resistance and obesity are characterized by low nitric oxide (NO) bioavailability. Insulin sensitivity is improved with stimulation of NO generating pathways. Consumption of dietary nitrate (NO3−) increases NO formation, via NO3− reduction to nitrite (NO2−) by oral bacteria. We hypothesized that acute dietary nitrate (beet juice) ingestion improves insulin sensitivity in obese but not in nonobese adults. 12 nonobese (body mass index: 26.3 ± 0.8 kg/m2 (mean ± SE)) and 10 obese adults (34.0 ± 0.8 kg/m2) ingested beet juice, supplemented with 25 g of glucose (carbohydrate load: 75 g), with and without prior use of antibacterial mouthwash to inhibit NO3− reduction to NO2−. Blood glucose concentrations after beet juice and glucose ingestion were greater in obese compared with nonobese adults at 60 and 90 minutes (P = 0.004). Insulin sensitivity, as represented by the Matsuda Index (where higher values reflect greater insulin sensitivity), was lower in obese compared with nonobese adults (P = 0.009). Antibacterial mouthwash rinsing decreased insulin sensitivity in obese (5.7 ± 0.7 versus 4.9 ± 0.6) but not in nonobese (8.1 ± 1.0 versus 8.9 ± 0.9) adults (P = 0.048). In conclusion, insulin sensitivity was improved in obese but not in nonobese adults following coingestion of beet juice and glucose when oral bacteria nitrate reduction was not inhibited. Obese adults may benefit from ingestion of healthy nitrate-rich foods during meals.


Clinical and Experimental Pharmacology and Physiology | 2017

Ergogenic properties of metformin in simulated high altitude

Rebecca L. Scalzo; Hunter Paris; Scott E. Binns; Janelle L. Davis; Joseph W. Beals; Christopher L. Melby; Gary J. Luckasen; Matthew S. Hickey; Benjamin F. Miller; Karyn L. Hamilton; Christopher Bell

Metformin augments glucose/glycogen regulation and may acutely promote fatigue resistance during high‐intensity exercise. In hypobaric environments, such as high altitude, the important contribution of carbohydrates to physiological function is accentuated as glucose/glycogen dependence is increased. Because hypoxia/hypobaria decreases insulin sensitivity, replenishing skeletal muscle glycogen in high altitude becomes challenging and subsequent physical performance may be compromised. We hypothesized that in conditions where glycogen repletion was critical to physical outcomes, metformin would attenuate hypoxia‐mediated decrements in exercise performance. On three separate randomly ordered occasions, 13 healthy men performed glycogen‐depleting exercise and ingested a low‐carbohydrate dinner (1200 kcals, <10% carbohydrate). The next morning, in either normoxia or hypoxia (FiO2=0.15), they ingested a high‐carbohydrate breakfast (1225 kcals, 70% carbohydrate). Placebo (719 mg maltodextrin) or metformin (500 mg BID) was consumed 3 days prior to each hypoxia visit. Subjects completed a 12.5 km cycle ergometer time trial 3.5 hours following breakfast. Hypoxia decreased resting and exercise oxyhemoglobin saturation (P<.001). Neither hypoxia nor metformin affected the glucose response to breakfast (P=.977), however, compared with placebo, metformin lowered insulin concentration in hypoxia 45 minutes after breakfast (64.1±6.6 μU/mL vs 48.5±7.8 μU/mL; mean±SE; P<.001). Post‐breakfast, pre‐exercise vastus lateralis glycogen content increased in normoxia (+33%: P=.025) and in hypoxia with metformin (+81%; P=.006), but not in hypoxia with placebo (+27%; P=.167). Hypoxia decreased time trial performance compared with normoxia (P<.01). This decrement was similar with placebo (+2.6±0.8 minutes) and metformin (+1.6±0.3 minutes). These results indicate that metformin promotes glycogen synthesis but not endurance exercise performance in healthy men exposed to simulated high altitude.


Wilderness & Environmental Medicine | 2015

The Effects of Sympathetic Inhibition on Metabolic and Cardiopulmonary Responses to Exercise in Hypoxic Conditions

Rebecca L. Scalzo; Garrett L. Peltonen; Scott E. Binns; Anna L. Klochak; Steve E. Szallar; Lacey M. Wood; Dennis G. Larson; Gary J. Luckasen; David Irwin; Thies Schroeder; Karyn L. Hamilton; Christopher Bell

OBJECTIVE Pre-exertion skeletal muscle glycogen content is an important physiological determinant of endurance exercise performance: low glycogen stores contribute to premature fatigue. In low-oxygen environments (hypoxia), the important contribution of carbohydrates to endurance performance is further enhanced as glucose and glycogen dependence is increased; however, the insulin sensitivity of healthy adult humans is decreased. In light of this insulin resistance, maintaining skeletal muscle glycogen in hypoxia becomes difficult, and subsequent endurance performance is impaired. Sympathetic inhibition promotes insulin sensitivity in hypoxia but may impair hypoxic exercise performance, in part due to suppression of cardiac output. Accordingly, we tested the hypothesis that hypoxic exercise performance after intravenous glucose feeding in a low-oxygen environment will be attenuated when feeding occurs during sympathetic inhibition. METHODS On 2 separate occasions, while breathing a hypoxic gas mixture, 10 healthy men received 1 hour of parenteral carbohydrate infusion (20% glucose solution in saline; 75 g), after which they performed stationary cycle ergometer exercise (~65% maximal oxygen uptake) until exhaustion. Forty-eight hours before 1 visit, chosen randomly, sympathetic inhibition via transdermal clonidine (0.2 mg/d) was initiated. RESULTS The mean time to exhaustion after glucose feeding both with and without sympathetic inhibition was not different (22.7 ± 5.4 minutes vs 23.5 ± 5.1 minutes; P = .73). CONCLUSIONS Sympathetic inhibition protects against hypoxia-mediated insulin resistance without influencing subsequent hypoxic endurance performance.


The FASEB Journal | 2015

Ascorbic Acid Supplementation: Influence of Delivery Method on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury

Janelle L. Davis; Hunter Paris; Joseph W. Beals; Scott E. Binns; Gregory R. Giordano; Rebecca L. Scalzo; Melani M. Schweder; E Blair; Christopher Bell

Collaboration


Dive into the Rebecca L. Scalzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Binns

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Hunter Paris

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Garrett L. Peltonen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Anna L. Klochak

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lacey M. Wood

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Joseph W. Beals

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge