Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca L. Sheets is active.

Publication


Featured researches published by Rebecca L. Sheets.


The Journal of Infectious Diseases | 2006

Phase 1 Safety and Immunogenicity Evaluation of a Multiclade HIV‐1 Candidate Vaccine Delivered by a Replication‐Defective Recombinant Adenovirus Vector

Andrew T. Catanzaro; Richard A. Koup; Mario Roederer; Robert T. Bailer; Mary E. Enama; Zoe Moodie; Lin Gu; Julie E. Martin; Laura Novik; Bimal K. Chakrabarti; Bryan T. Butman; Jason G. D. Gall; C. Richter King; Charla A. Andrews; Rebecca L. Sheets; Phillip L. Gomez; John R. Mascola; Gary J. Nabel

BACKGROUND The development of an effective human immunodeficiency virus (HIV) vaccine is a high global priority. Here, we report the safety, tolerability, and immunogenicity of a replication-defective recombinant adenovirus serotype 5 (rAd5) vector HIV-1 candidate vaccine. METHODS The vaccine is a mixture of 4 rAd5 vectors that express HIV-1 subtype B Gag-Pol fusion protein and envelope (Env) from subtypes A, B, and C. Healthy, uninfected adults were randomized to receive 1 intramuscular injection of placebo (n=6) or vaccine at dose levels of 10(9) (n=10), 10(10) (n=10), or 10(11) (n=10) particle units and were followed for 24 weeks to assess immunogenicity and safety. RESULTS The vaccine was well tolerated but was associated with more reactogenicity at the highest dose. At week 4, vaccine antigen-specific T cell responses were detected in 28 (93.3%) and 18 (60%) of 30 vaccine recipients for CD4(+) and CD8(+) T cells, respectively, by intracellular cytokine staining assay and in 22 (73%) of 30 vaccine recipients by enzyme-linked immunospot assay. Env-specific antibody responses were detected in 15 (50%) of 30 vaccine recipients by enzyme-linked immunosorbant assay and in 28 (93.3%) of 30 vaccine recipients by immunoprecipitation followed by Western blotting. No neutralizing antibody was detected. CONCLUSIONS A single injection induced HIV-1 antigen-specific CD4(+) T cell, CD8(+) T cell, and antibody responses in the majority of vaccine recipients. This multiclade rAd5 HIV-1 vaccine is now being evaluated in combination with a multiclade HIV-1 DNA plasmid vaccine.


PLOS Pathogens | 2007

Mechanism of Ad5 Vaccine Immunity and Toxicity: Fiber Shaft Targeting of Dendritic Cells

Cheng Cheng; Jason G. D. Gall; Wing-Pui Kong; Rebecca L. Sheets; Phillip L. Gomez; C. Richter King; Gary J. Nabel

Recombinant adenoviral (rAd) vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5) vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs) was independent of the coxsackievirus and adenovirus receptor (CAR), its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.


Toxicological Sciences | 2006

Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts.

Rebecca L. Sheets; Judith Stein; T. Scott Manetz; Chris Duffy; Martha Nason; Charla A. Andrews; Wing-Pui Kong; Gary J. Nabel; Phillip L. Gomez

Abstract The Vaccine Research Center has developed a number of vaccine candidates for different diseases/infectious agents (HIV-1, Severe Acute Respiratory Syndrome virus, West Nile virus, and Ebola virus, plus a plasmid cytokine adjuvant—IL-2/Ig) based on a DNA plasmid vaccine platform. To support the clinical development of each of these vaccine candidates, preclinical studies have been performed in mice or rabbits to determine where in the body these plasmid vaccines would biodistribute and how rapidly they would clear. In the course of these studies, it has been observed that regardless of the gene insert (expressing the vaccine immunogen or cytokine adjuvant) and regardless of the promoter used to drive expression of the gene insert in the plasmid backbone, the plasmid vaccines do not biodistribute widely and remain essentially in the site of injection, in the muscle and overlying subcutis. Even though ∼ 1014 molecules are inoculated in the studies in rabbits, by day 8 or 9 (∼ 1 week postinoculation), already all but on the order of 104–106 molecules per microgram of DNA extracted from tissue have been cleared at the injection site. Over the course of 2 months, the plasmid clears from the site of injection with only a small percentage of animals (generally 10–20%) retaining a small number of copies (generally around 100 copies) in the muscle at the injection site. This pattern of biodistribution (confined to the injection site) and clearance (within 2 months) is consistent regardless of differences in the promoter in the plasmid backbone or differences in the gene insert being expressed by the plasmid vaccine. In addition, integration has not been observed with plasmid vaccine candidates inoculated i.m. by Biojector 2000 or by needle and syringe. These data build on the repeated-dose toxicology studies performed (see companion article, Sheets et al., 2006) to demonstrate the safety and suitability for investigational human use of DNA plasmid vaccine candidates for a variety of infectious disease prevention indications.


The Journal of Infectious Diseases | 2014

DNA Vaccines Encoding Ebolavirus and Marburgvirus Wild Type Glycoproteins are Safe and Immunogenic in a Phase I Clinical Trial

Uzma N. Sarwar; Pamela Costner; Mary E. Enama; Nina M. Berkowitz; Zonghui Hu; Cynthia S. Hendel; Sandra Sitar; Sarah Plummer; Sabue Mulangu; Robert T. Bailer; Richard A. Koup; John R. Mascola; Gary J. Nabel; Nancy J. Sullivan; Barney S. Graham; Julie E. Ledgerwood; Ingelise J. Gordon; LaSonji A. Holman; Floreliz Mendoza; Laura Novik; Jamie G. Saunders; Kathy Zephir; Niraj Desai; Sheryl Young; Joseph P. Casazza; Brenda D. Larkin; Galina Yamshchikov; Olga Vasilenko; Phillip L. Gomez; Charla Andrews

Background Ebolavirus and Marburgvirus cause severe hemorrhagic fever with high mortality and are potential bioterrorism agents. There are no available vaccines or therapeutic agents. Previous clinical trials evaluated transmembrane-deleted and point-mutation Ebolavirus glycoproteins (GPs) in candidate vaccines. Constructs evaluated in this trial encode wild-type (WT) GP from Ebolavirus Zaire and Sudan species and the Marburgvirus Angola strain expressed in a DNA vaccine. Methods The VRC 206 study evaluated the safety and immunogenicity of these DNA vaccines (4 mg administered intramuscularly by Biojector) at weeks 0, 4, and 8, with a homologous boost at or after week 32. Safety evaluations included solicited reactogenicity and coagulation parameters. Primary immune assessment was done by means of GP-specific enzyme-linked immunosorbent assay. Results The vaccines were well tolerated, with no serious adverse events; 80% of subjects had positive enzyme-linked immunosorbent assay results (≥30) at week 12. The fourth DNA vaccination boosted the immune responses. Conclusions The investigational Ebolavirus and Marburgvirus WT GP DNA vaccines were safe, well tolerated, and immunogenic in this phase I study. These results will further inform filovirus vaccine research toward a goal of inducing protective immunity by using WT GP antigens in candidate vaccine regimens. Clinical Trials Registration NCT00605514.


Journal of Acquired Immune Deficiency Syndromes | 2008

Inclusion of Adolescents in Preventive HIV Vaccine Trials : Public Health Policy and Research Design at a Crossroads

Heather B. Jaspan; Coleen K. Cunningham; Tim Tucker; Peter F. Wright; Steve Self; Rebecca L. Sheets; Audrey Smith Rogers; Linda-Gail Bekker; Craig M. Wilson; Ann Duerr; Judith N. Wasserheit

PURPOSE To report a case of surgically induced necrotizing scleritis (SINS) as a complication of conjunctival autograft after pterygium excision. METHODS A 52-year-old man had undergone nasal pterygium excision with conjunctival autograft in the right eye at another facility. He was treated for suspected infective scleritis before presentation. RESULTS The sclera, at the site of prior pterygium excision, showed significant thinning with uveal show. There was active inflammation adjacent to the site of thinning. Systemic studies and the examination were noncontributory. The patient was suspected of having SINS and received pulsed injections of methylprednisolone 1000 mg/d for 3 days. The patient also underwent an emergency scleral patch graft with amniotic membrane graft. Over the next 2 weeks, the scleral graft showed vascularization and was taken well. CONCLUSIONS SINS may develop after pterygium surgery with conjunctival autograft. Evidence of connective tissue disease may or may not be found on clinical examination and on laboratory studies. Early diagnosis, prompt immunosuppression, and scleral patch grafting prevents progression and further devastating complications.


Open Forum Infectious Diseases | 2015

First-in-Human Evaluation of the Safety and Immunogenicity of a Recombinant Vesicular Stomatitis Virus Human Immunodeficiency Virus-1 gag Vaccine (HVTN 090).

Jonathan D. Fuchs; Ian Frank; Marnie Elizaga; Mary Allen; Nicole Frahm; Nidhi Kochar; Sue Li; Srilatha Edupuganti; Spyros A. Kalams; Georgia D. Tomaras; Rebecca L. Sheets; Michael Pensiero; Marc A. Tremblay; Terry J. Higgins; Theresa Latham; Michael A. Egan; David K. Clarke; John H. Eldridge

Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 103 to 3.4 × 107 particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases.


Vaccine | 2014

Systematic evaluation of in vitro and in vivo adventitious virus assays for the detection of viral contamination of cell banks and biological products.

James Gombold; Stephen Karakasidis; Paula Niksa; John Podczasy; Kitti Neumann; James A. Richardson; Nandini Sane; Renita Johnson-Leva; Valerie B. Randolph; Jerald C. Sadoff; Phillip Minor; Alexander C. Schmidt; Paul Duncan; Rebecca L. Sheets

Viral vaccines and the cell substrates used to manufacture them are subjected to tests for adventitious agents, including viruses, contaminate. Some of the compendial methods (in vivo and in vitro in cell culture) were established in the mid-20th century. These methods have not been subjected to current assay validation, as new methods would need to be. This study was undertaken to provide insight into the breadth (selectivity) and sensitivity (limit of detection) of the routine methods, two such validation parameters. Sixteen viral stocks were prepared and characterized. These stocks were tested in serial dilutions by the routine methods to establish which viruses were detected by which methods and above what limit of detection. Sixteen out of sixteen viruses were detected in vitro, though one (bovine viral diarrhea virus) required special conditions to detect and another (rubella virus) was detected with low sensitivity. Many were detected at levels below 1 TCID50 or PFU (titers were established on the production cell line in most cases). In contrast, in vivo, only 6/11 viruses were detected, and 4 of these were detected only at amounts one or more logs above 1 TCID50 or PFU. Only influenza virus and vesicular stomatitis virus were detected at lower amounts in vivo than in vitro. Given the call to reduce, refine, or replace (3Rs) the use of animals in product safety testing and the emergence of new technologies for the detection of viruses, a re-examination of the current adventitious virus testing strategies seems warranted. Suggested pathways forward are offered.


Vaccine | 2015

The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG)

Robert T. Chen; Baevin Carbery; Lisa Mac; Kenneth I. Berns; Louisa E. Chapman; Richard C. Condit; Jean-Louis Excler; Marc Gurwith; Michael Hendry; Arifa S. Khan; Najwa Khuri-Bulos; Bettina Klug; James S. Robertson; Stephen J. Seligman; Rebecca L. Sheets; Anna-Lise Williamson

Recombinant viral vectors provide an effective means for heterologous antigen expression in vivo and thus represent promising platforms for developing novel vaccines against human pathogens from Ebola to tuberculosis. An increasing number of candidate viral vector vaccines are entering human clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to improve our ability to anticipate potential safety issues and meaningfully assess or interpret safety data, thereby facilitating greater public acceptance when licensed.


Vaccine | 2016

Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains.

Richard C. Condit; Anna-Lise Williamson; Rebecca L. Sheets; Stephen J. Seligman; Thomas P. Monath; Jean-Louis Excler; Marc Gurwith; Karin Bok; James S. Robertson; Denny Kim; R. Michael Hendry; Vidisha Singh; Lisa M. Mac; Robert T. Chen

Abstract In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus-vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains.


Archive | 2015

Role of Analytics in Viral Safety

Rebecca L. Sheets; Paul Duncan

In summary, this chapter reviews the principles of how the current and routine tests detect adventitious agents, and reviews how novel and emerging methods differ in their detection principles. These facets may permit novel methods to emerge to supplement, refine, or replace the routine methods. We have suggested a framework for risk assessment to assure biosafety in vaccines and suggested quantitative modeling to help crystallize thinking about the place of testing, either routine or novel, in this assurance. We assert that testing for adventitious agents should not be the sole basis on which product biosafety is assured. Appropriate sourcing and quality control of raw and starting materials, adherence to principles of Good Manufacturing Practices, including environmental and personnel monitoring and process validation, and finally, testing as verification are the package needed for maximal assurance of biosafety. Thus, a pathway forward to a new paradigm for adventitious agent testing exists in which detection of a broader array of potential adventitious agents might be included in the testing, with adequate sensitivity to provide the needed assurance of verification that there has been no catastrophic breach, in the context of the overall process, design, and adherence to cGMP. Furthermore, it is our hope that we may be able to implement the 3 Rs policy to reduce, replace, and/or refine the use of animals in product safety testing, at the same time that we provide greater assurance of the biosafety of vaccines.

Collaboration


Dive into the Rebecca L. Sheets's collaboration.

Top Co-Authors

Avatar

Phillip L. Gomez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary J. Nabel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karen L. Goldenthal

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Mary Allen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael Pensiero

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert T. Bailer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Antonia Geber

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Audrey Smith Rogers

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge