Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reema Paudel is active.

Publication


Featured researches published by Reema Paudel.


Brain | 2009

Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease

Juliane Neumann; Jose Bras; Emma Deas; Sean S. O'Sullivan; Laura Parkkinen; Robin H. Lachmann; Abi Li; Janice L. Holton; Rita Guerreiro; Reema Paudel; Badmavady Segarane; Andrew Singleton; Andrew J. Lees; John Hardy; Henry Houlden; Tamas Revesz; Nicholas W. Wood

Mutations in the glucocerebrosidase gene (GBA) are associated with Gauchers disease, the most common lysosomal storage disorder. Parkinsonism is an established feature of Gauchers disease and an increased frequency of mutations in GBA has been reported in several different ethnic series with sporadic Parkinsons disease. In this study, we evaluated the frequency of GBA mutations in British patients affected by Parkinsons disease. We utilized the DNA of 790 patients and 257 controls, matched for age and ethnicity, to screen for mutations within the GBA gene. Clinical data on all identified GBA mutation carriers was reviewed and analysed. Additionally, in all cases where brain material was available, a neuropathological evaluation was performed and compared to sporadic Parkinsons disease without GBA mutations. The frequency of GBA mutations among the British patients (33/790 = 4.18%) was significantly higher (P = 0.01; odds ratio = 3.7; 95% confidence interval = 1.12-12.14) when compared to the control group (3/257 = 1.17%). Fourteen different GBA mutations were identified, including three previously undescribed mutations, K7E, D443N and G193E. Pathological examination revealed widespread and abundant alpha-synuclein pathology in all 17 GBA mutation carriers, which were graded as Braak stage of 5-6, and had McKeiths limbic or diffuse neocortical Lewy body-type pathology. Diffuse neocortical Lewy body-type pathology tended to occur more frequently in the group with GBA mutations compared to matched Parkinsons disease controls. Clinical features comprised an early onset of the disease, the presence of hallucinations in 45% (14/31) and symptoms of cognitive decline or dementia in 48% (15/31) of patients. This study demonstrates that GBA mutations are found in British subjects at a higher frequency than any other known Parkinsons disease gene. This is the largest study to date on a non-Jewish patient sample with a detailed genotype/phenotype/pathological analyses which strengthens the hypothesis that GBA mutations represent a significant risk factor for the development of Parkinsons disease and suggest that to date, this is the most common genetic factor identified for the disease.


Nature Genetics | 2010

Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C

Guida Landouré; Anselm A. Zdebik; Tara Martinez; Barrington G. Burnett; Horia Stanescu; Hitoshi Inada; Yijun Shi; Addis A. Taye; Lingling Kong; Clare H. Munns; Shelly SeungAh Choo; Christopher B. Phelps; Reema Paudel; Henry Houlden; Christy L. Ludlow; Michael J. Caterina; Rachelle Gaudet; Robert Kleta; Kenneth H. Fischbeck; Charlotte J. Sumner

Charcot-Marie-Tooth disease type 2C (CMT2C) is an autosomal dominant neuropathy characterized by limb, diaphragm and laryngeal muscle weakness. Two unrelated families with CMT2C showed significant linkage to chromosome 12q24.11. We sequenced all genes in this region and identified two heterozygous missense mutations in the TRPV4 gene, C805T and G806A, resulting in the amino acid substitutions R269C and R269H. TRPV4 is a well-known member of the TRP superfamily of cation channels. In TRPV4-transfected cells, the CMT2C mutations caused marked cellular toxicity and increased constitutive and activated channel currents. Mutations in TRPV4 were previously associated with skeletal dysplasias. Our findings indicate that TRPV4 mutations can also cause a degenerative disorder of the peripheral nerves. The CMT2C-associated mutations lie in a distinct region of the TRPV4 ankyrin repeats, suggesting that this phenotypic variability may be due to differential effects on regulatory protein-protein interactions.


Annals of Neurology | 2009

SNCA Variants Are Associated with Increased Risk for Multiple System Atrophy

Sonja W. Scholz; Henry Houlden; Claudia Schulte; Manu Sharma; Abi Li; Daniela Berg; Anna Melchers; Reema Paudel; J. Raphael Gibbs; Javier Simón-Sánchez; C Paisan-Ruiz; Jose Bras; Jinhui Ding; Honglei Chen; Bryan J. Traynor; Sampath Arepalli; Ryan Zonozi; Tamas Revesz; Janice L. Holton; Nicholas W. Wood; Andrew J. Lees; Wolfgang H. Oertel; Ullrich Wüllner; Stefano Goldwurm; Maria Teresa Pellecchia; Thomas Illig; Olaf Riess; Hubert H. Fernandez; Ramon L. Rodriguez; Michael S. Okun

To test whether the synucleinopathies Parkinsons disease and multiple system atrophy (MSA) share a common genetic etiology, we performed a candidate single nucleotide polymorphism (SNP) association study of the 384 most associated SNPs in a genome‐wide association study of Parkinsons disease in 413 MSA cases and 3,974 control subjects. The 10 most significant SNPs were then replicated in additional 108 MSA cases and 537 controls. SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA (combined p = 5.5 × 1012; odds ratio 6.2). Ann Neurol 2009;65:610–614


Annals of Neurology | 2013

Mutations in the autoregulatory domain of β-tubulin 4a cause hereditary dystonia

Joshua Hersheson; Niccolo E. Mencacci; Mary B. Davis; Nicola MacDonald; Daniah Trabzuni; Mina Ryten; Alan Pittman; Reema Paudel; Eleanna Kara; Katherine Fawcett; Vincent Plagnol; Kailash P. Bhatia; Alan Medlar; Horia Stanescu; John Hardy; Robert Kleta; Nicholas W. Wood; Henry Houlden

Dystonia type 4 (DYT4) was first described in a large family from Heacham in Norfolk with an autosomal dominantly inherited whispering dysphonia, generalized dystonia, and a characteristic hobby horse ataxic gait. We carried out a genetic linkage analysis in the extended DYT4 family that spanned 7 generations from England and Australia, revealing a single LOD score peak of 6.33 on chromosome 19p13.12‐13. Exome sequencing in 2 cousins identified a single cosegregating mutation (p.R2G) in the β‐tubulin 4a (TUBB4a) gene that was absent in a large number of controls. The mutation is highly conserved in the β‐tubulin autoregulatory MREI (methionine–arginine–glutamic acid–isoleucine) domain, highly expressed in the central nervous system, and extensive in vitro work has previously demonstrated that substitutions at residue 2, specifically R2G, disrupt the autoregulatory capability of the wild‐type β‐tubulin peptide, affirming the role of the cytoskeleton in dystonia pathogenesis. Ann Neurol 2013;73:546–553


Neurology | 2010

THAP1 mutations (DYT6) are an additional cause of early-onset dystonia

Henry Houlden; Sa Schneider; Reema Paudel; Anna Melchers; Petra Schwingenschuh; Mark J. Edwards; John Hardy; Kailash P. Bhatia

Background: The clinical phenotype of DYT6 consists mainly of primary craniocervical dystonia. Recently, the THAP1 gene was identified as the cause of DYT6, where a total of 13 mutations have been identified in Amish-Mennonite and European families. Methods: We sequenced the THAP1 gene in a series of 362 British, genetically undetermined, primary dystonia patients (78 with focal, 186 with segmental, and 98 with generalized dystonia) and in 28 dystonia-manifesting DYT1 patients and 176 normal control individuals. Results: Nine coding mutations were identified in the THAP1 gene. Two were small deletions, 2 were nonsense, and 5 were missense. Eight mutations were heterozygous, and 1 was homozygous. The main clinical presentation of cases with THAP1 mutations was early-onset (<30 years) dystonia in the craniocervical region or the limbs (8 of 9 patients). There was phenotypic variability with laryngeal or oromandibular dystonia present in 3 cases. Four of 9 THAP1 cases developed generalized dystonia. Conclusions: The number of THAP1 mutations has been significantly expanded, indicating an uncommon but important cause of dystonia. Coding mutations account for 9 of 362 dystonia cases, indicating a mutation frequency of 2.5% of dystonia cases in the population that we have screened. The majority of cases reported here with THAP1 mutations had craniocervical- or limb-onset segmental dystonia, but we also identified 1 homozygous THAP1 mutation, associated initially with writers dystonia and then developing segmental dystonia. Three of our patients had a nonsense or frameshift THAP1 mutation and the clinical features of laryngeal or oromandibular dystonia. These data suggest that early-onset dystonia that includes the involvement of the larynx or face is frequently associated with THAP1 mutations.


Neurology | 2009

GLUCOCEREBROSIDASE MUTATIONS IN 108 NEUROPATHOLOGICALLY CONFIRMED CASES OF MULTIPLE SYSTEM ATROPHY

B. Segarane; Abi Li; Reema Paudel; Sonja W. Scholz; Juliane Neumann; Aj Lees; Tamas Revesz; J Hardy; Christopher J. Mathias; Nicholas W. Wood; Janice L. Holton; Henry Houlden

Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA) are synucleinopathies whose primary pathogenic event is the deposition of inclusions composed of aberrantly fibrillized α-synuclein.1 In PD and LBD, Lewy bodies are the key aggregate, whereas in MSA, α-synuclein accumulates in the form of oligodendroglial and neuronal cytoplasmic inclusions (GCIs and NCIs).2,3 Parkinsonian manifestations have been noted in a subset of patients with Gaucher disease and there is evidence that parkinsonism is more frequent among carrier relatives of patients with Gaucher disease.4 In a remarkable study, the glucocerebrosidase (GBA) gene was sequenced in an American PD brain bank series where GBA mutations were detected at a much higher frequently than in controls (PD 21% vs control 4.5%).5 These findings have since been replicated, mainly in Ashkenazi patient groups who have a higher mutation frequency but also in patients with clinically and pathologically diagnosed PD and LBD in a number of studies in different populations.4 In a study of 75 neuropathologically confirmed synucleinopathies, GBA mutations were found in 23% of the cases with Lewy bodies.6 The frequency of GBA mutations around the world between 2.3 and 31% (depending on population) indicates that GBA mutations are one of the commonest genetic risk factors for PD. GBA mutation carriers have a wide spectrum of phenotypes, ranging from classic l-dopa-responsive PD to LBD. In neuropathologic studies of PD/LBD cases, GBA mutations, α-synuclein inclusions, and Lewy bodies have been seen. This spectrum of clinical and pathologic features would suggest that MSA should also be a candidate to have GBA mutation.3 Only 12 cases of MSA have been analyzed for GBA mutations and defects were seen in this handful of cases.6 We extracted DNA from the brain tissue of 108 neuropathologically confirmed British MSA cases that had been diagnosed according to brain bank criteria and 257 normal British controls. Mean age at onset was 58.2 ± 10.7 years (range 34–83), mean age at death 64.5 ± 10.2 years (39–87), mean disease duration 6.8 ± 2.9 years (2–16), and 48% were men. All exons and flanking intronic regions of the GBA gene were sequenced in MSA and control cases. To avoid amplifying and sequencing the GBA pseudogene we employed long range GBA PCR and then BigDye sequencing as previously described.7 In our MSA study group of 108 cases, we identified one heterozygous GBA mutation (c.904C>T; R262H), giving a mutation frequency of 0.92%. In the British controls, three heterozygous mutations (V497L, N409S, and R269Q) out of 257 cases were identified (1.17%). There was no significant difference between the two groups (p = 0.66). The single MSA case with the heterozygous R262H mutation was a woman with an age at onset of 44 years. She had parkinsonian, cerebellar, and autonomic features (MSA–mixed type) with no family history. She died at age 51 years and the neuropathology revealed widespread GCIs and NCIs with a predominance in striatonigral structures. There were no Lewy bodies. One limitation of our study is the small sample size. Our study has a power of 80% to detect variants with an OR >1.61 or <0.63 at a significance level of 0.05. The results of this study indicate that GBA mutations are not common etiologic players in Caucasian patients with MSA. We cannot exclude that GBA mutations confer modest or low risk to disease. Furthermore, we did not sequence risk variants in regulatory regions (such as the promotor region or untranslated regions). Mutations in these regions would therefore have been missed. The unexpected role of GBA mutations has been demonstrated in several populations and is undoubtedly a highly significant risk factor for PD and LBD. More importantly, GBA mutations reveal a direct link between the lysosomal protein pathway and the clearance or the development of α-synuclein aggregates into Lewy bodies. Our study indicates that GBA mutations are not associated with MSA in the population that we analyzed, and that this branch of the ceramide pathway is unlikely to be associated with all types of primary α-synuclein deposition.


eLife | 2015

Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons

Samuel S. Pappas; Katherine Darr; Sandra M. Holley; Carlos Cepeda; Omar S. Mabrouk; Jenny Marie T. Wong; Tessa M. LeWitt; Reema Paudel; Henry Houlden; Robert T. Kennedy; Michael S. Levine; William T. Dauer

Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI: http://dx.doi.org/10.7554/eLife.08352.001


Movement Disorders | 2012

THAP1 mutations and dystonia phenotypes: Genotype phenotype correlations

Georgia Xiromerisiou; Henry Houlden; Nikolaos Scarmeas; Maria Stamelou; Eleanna Kara; John Hardy; Andrew J. Lees; Prasad Korlipara; Patricia Limousin; Reema Paudel; Georgios M. Hadjigeorgiou; Kailash P. Bhatia

THAP1 mutations have been shown to be the cause of DYT6. A number of different mutation types and locations in the THAP1 gene have been associated with a range of severity and dystonia phenotypes, but, as yet, it has been difficult to identify clear genotype phenotype patterns. Here, we screened the THAP1 gene in a further series of dystonia cases and evaluated the mutation pathogenicity in this series as well as previously reported mutations to investigate possible phenotype‐genotype correlations. THAP1 mutations have been identified throughout the coding region of the gene, with the greatest concentration of variants localized to the THAP1 domain. In the additional cases analyzed here, a further two mutations were found. No obvious, indisputable genotype‐phenotype correlation emerged from these data. However, we managed to find a correlation between the pathogenicity of mutations, distribution, and age of onset of dystonia. THAP1 mutations are an important cause of dystonia, but, as yet, no clear genotype‐phenotype correlations have been identified. Greater mutation numbers in different populations will be important and mutation‐specific functional studies will be essential to identify the pathogenicity of the various THAP1 mutations.


Movement Disorders | 2010

Indian-Subcontinent NBIA: Unusual Phenotypes, Novel PANK2 Mutations, and Undetermined Genetic Forms

Annu Aggarwal; Susanne A. Schneider; Henry Houlden; Monty Silverdale; Reema Paudel; Coro Paisán-Ruiz; Shrinivas Desai; Mihir Munshi; Darshana Sanghvi; John Hardy; Kailash P. Bhatia; Mohit Bhatt

Neurodegeneration with brain iron accumulation (NBIA) is etiologically, clinically, and by imaging a heterogeneous group including NBIA types 1 [pantothenate kinase‐associated neurodegeneration (PKAN)] and 2 (PLA2G6‐associated neurodegeneration), neuroferritinopathy, and aceruloplasminaemia. Data on genetically defined Indian‐subcontinent NBIA cases are limited. We report 6 patients from the Indian‐subcontinent with a movement disorder and MRI basal ganglia iron deposition, compatible with diagnosis of an NBIA syndrome. All patients were screened for abnormalities in serum ceruloplasmin and ferritin levels and mutations in NBIA‐associated genes [pantothenate kinase 2 (PANK2), PLA2G6 and ferritin light chain (exon 4)]. We present clinical, imaging and genetic data correlating phenotype–genotype relations. Four patients carried PANK2 mutations, two of these were novel. The clinical phenotype was mainly dystonic with generalized dystonia and marked orobulbar features in the 4 adolescent‐onset cases. One of the four had a late‐onset (age 37) unilateral jerky postural tremor. His mutation, c.1379C>T, appears associated with a milder phenotype. Interestingly, he developed the eye‐of‐the‐tiger sign only 10 years after onset. Two of the six presented with adult‐onset levodopa (L‐dopa)‐responsive asymmetric re‐emergent rest tremor, developing L‐dopa‐induced dyskinesias, and good benefit to deep brain stimulation (in one), thus resembling Parkinsons disease (PD). Both had an eye‐of‐the‐tiger sign on MRI but were negative for known NBIA‐associated genes, suggesting the existence of further genetic or sporadic forms of NBIA syndromes. In conclusion, genetically determined NBIA cases from the Indian subcontinent suggest presence of unusual phenotypes of PANK2 and novel mutations. The phenotype of NBIA of unknown cause includes a PD‐like presentation.


Neuropathology and Applied Neurobiology | 2012

Review: Genetics and neuropathology of primary pure dystonia

Reema Paudel; J Hardy; Tamas Revesz; Janice L. Holton; Henry Houlden

R. Paudel, J. Hardy, T. Revesz, J. L. Holton and H. Houlden (2012) Neuropathology and Applied Neurobiology38, 520–534

Collaboration


Dive into the Reema Paudel's collaboration.

Top Co-Authors

Avatar

Henry Houlden

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Abi Li

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Tamas Revesz

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

J Hardy

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Eleanna Kara

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge